BRED L

JERG-2-700-TP001 NOTICE-1

FHBOEET TV

(Functional Model of Spacecrafts (FMS))

202043 H310 il
FHNZWRARRE

REEXE

CCICEENDBERIE. —BHOLTERIZHOAZEMELTULET JAXA (X, hHS1EHROIE
M. ARAEXEEREZED . BRI RICASRIAT ILDOTREIHYEFLE A, F=.
JAXA [E DB IEHRDOFAICEET AIEFICOVNT, Ao ERZEVFEE A,

Disclaimer
The information contained herein is for general informational purposes only. JAXA makes no
warranty, express or implied, including as to the accuracy, usefulness or timeliness of any

information herein. JAXA will not be liable for any losses relating to the use of the information.

1T

T305-8505 ZIHIE DOLIEHFIH 2-1-1
FHMEARREKE T2 EEEHER
JAXA (Japan Aerospace Exploration Agency)

JERG-2-700-TP001 NOTICE-1

AEFFEFETEPNLFEREZ AAGEICHIR L, BAROFTHER JAXA ([ZXVfilEShi,
AEEIAAFEZLE LT 5, 220, MEO M TEBELRL LRV HDIZONTIE, TN
EARERD, LEONFIZER RN H25E1E, AAGELROEGEFEOR G 22RO L, JAXA 2724 -
(BRAMEHEER £ Tl 2472 2 &,

This document was originally drafted in English, then subsequently translated into Japanese and authorized by
the Japanese space agency, JAXA.

The English translation is for reference purposes only, except for some tables and figures that contain English
only, in which case they are the original. If there is anything ambiguous about the content of the text, please refer
to both the Japanese version and the English version and contact JAXA Safety and Mission Assurance
Department.

JERG-2-700-TP001-NOTICE1

Functional Model of Spacecrafts
(FMS)

GSTOS 201-1.1
Issue 1.1
31 March 2023

Japan Aerospace Exploration Agency (JAXA)

This document was originally drafted in English,
then subsequently translated into Japanese and
authorized by the Japanese space agency, JAXA.

The English translation is for reference purposes
only, except for some tables and figures that contain
English only, in which case they are the original. If
there is anything ambiguous about the content of the
text, please refer to both the Japanese version and
the English version and contact JAXA Safety and
Mission Assurance Department.

JERG-2-700-TP001-NOTICE1

AREFRETEME-EZEZHAEICEIRL.
BARDFEHERE JAXA [C&>THIE ST,

AIZEFAAREBEEELT D, L. IERD—
HBTEBRITLLMAZVIDIZONTIE. b
NEXRELD, XEQOABICTBHEELZALH S
HZEE BAREBERUVEZEONAZSEOELE.
IAXARE-EHEMHERETERET S L,

JERG-2-700-TP001-NOTICE1

CONTENTS // B

1. INTRODUCTION // X T ®iZ 1
Ll PUTPOSE // H ettt sttt ettt n ettt n sttt sen s 1
1.2 SCOPE N BB ..ottt 2
1.3, Applicability // JE T o.oviveieieceeiieie et 2
1.4, References // BT SUEE ..ottt 2

1.4.1. Normative References // S 3T ..ot 2
1.42. Informative References // Z575 SURE o..ouiiiiieiieeeeeeeeee et 2
1.5. Document Structure // AXTEDREARo.oooveieeeeeceeeeeeeeee et 3
1.6. Definitions and Notations // TEFE M UNZERLTE v v 4
1.6.1. Terms defined in this document // ARZETEFE ZFUD FHFE oo 4
1.6.2. NOLAHONS // FERETE oottt 4
1.7. Verbal forms // FFEUFZI ..ottt 5

2. OVERVIEW 7
200 GENETAL// B ettt ettt ettt ettt n e 7
2.2. Purpose of This Model // T DTFT ILD B H oo 7
2.3, FUNCHONAL ODBJECL....eouiiiiiiiiiiitieieett ettt sttt et ettt e a e bt e bt e b e et e e atesaeeseeesbeenbeenseenes 8
2.4. Spacecraft Information BaSe 2c.cccuiiieiiieriieiiiie ettt snaennaens 10
2.5. Communications Between Functional Objects and Other entities Functional Objects & {thl >4 255
DB TR oo 11

3. METHOD OF MODELING WITH FUNCTIONAL OBJECTS FUNCTIONALOBJECTS (2 X 5

T ALD I 13
3.1 GENEIAL /] B oottt ettt ettt ettt 13
3.2, FUNCHONAL ODJECLS ...uveeiieiieiieie ettt ettt et e et e bt et e e seestessaesste s st esseenseensessaesaenseensesnsesnsesnsenseenseenes 15

3.2.10 GENETAL /1 I oottt ettt enaes 15
3.2.2. Parent-Child Relation // Bl BELR ..o oot 16
3.2.3. Effective-Conditions of Functional Objects (Valid/Invalid and Effective-Condition Expressions)
Functional Objects DA NS (/RN B O RNSIETD) e 17
TG T N ' 1011 F USRS 18
33,10 GENEIAL// I oottt 18
3.3.2. Effective-Conditions of Attributes (Valid/Invalid and Effective-Condition Expressions)
Attributes DA RGN (/RN K OCAZNGAFERD) 19
3.3.3. Criticality Levels Of VAIUESc.cccvieiiieiiiieiieiieeee ettt 19
3.3.4. TNTHAL VAIUE ..ottt ettt et e et e et e e sabeestbeeseeestbeesaeensaeesneennes 20
3.3.5. Scalar Attributes and Complicated AtIIDULESc.ecvervieriieriieieiie et 20
3.3.6. ENUMErative AIIDULE ...c.eeiieieiieciieie ettt sttt ettt et eesa e st e seeseensesnaesneesseenseenes 21
3.3.6.1. GeNeral // = ..o 21
3.3.6.2. Values and Enumerative Names // {E}2 U8 Enumerative Names..............ccoceeuevereveveeeeenenennnns 21
3.3.60.3. CritiCality LEVEL ..coueeiuieiieiieii ettt sttt ettt et e e s eeesntesseeseenseenseennennaens 21
3.3.7. Numerical Value ATITDULE........ccuiiiiieiieeii ettt e e e e s beestaeesaaeessseesssaensseas 22
3371, GenEral /] — B oottt 22
3.3.7.2. Valid RANEES.....cueiiieieieiieiieie ettt ettt st ettt et e et e et e s s e e seenseensesnnesneesseenseensennsensnenseens 22
3.3.7.3. Action Limits, Caution Limits, and Criticality Level...........cccceeviiiiiieiiiiiniieie e 22
I O 1< ¢ 15 o) 1 1SS 23
340, GENEIAL// I oottt 23
3.4.2. Atribute Change RULEScoviieiiiiiiieciie ettt e et e et e sbeeenbeessbeessbeesnseesnseeans 24
3.4.3. NO OPeration (INOP)couieiieiieieeiesttee ettt ete ettt e e e sbesaesaeesseenseenseensessnenseens 24

JERG-2-700-TP001-NOTICE1

3.4.4. Value Setting Attributes and Parameters of Operations..........ccocceveererienienienieneeeeee e 25
3441, GenEral /] — B ..ottt 25
3.4.4.2. Valid RANEES....ccueiiiiiiiieiiet ettt ettt et ettt e b et e e ettt saeenb ettt eateeaeenneen 25

3.4.5. Effective-Conditions of Operations (Valid/Invalid and Effective-Condition Expressions)

Operations DA NGAM (A RE OB ZNTRAERD e 26

3.4.6. CIItICAIIEY LEVEL ..eeiiiieiiieeieeeitece ettt ettt et et e et e etaeeaaeestaeesaeensbeensaeensaeensneenses 27

3.5, EVEINLE CLASSES ..uvieutiiiiieeiie ettt ettt ette ettt et e ettt estt e e tb e e ate e tb e e sbeetbeensbe e tbeeasbeesbeeesbeetbeeenbeesteennaeennaean 28

3.5.1. Event and EVENt CLASSEScveiieiieiieiieiieieetesite ettt ettt et et e e e ensesnaesneesneeseenes 28
35,100 GeNEral // =B ..ottt 28
3.5.1.2. TrigEEr CONAItIONS ..u.eeiieniieiiieiieeiteet ettt ettt sttt ettt ettt e b e b e esbeestesatesaeesbee bt enteeatesaeenbeens 28

3.5.2. ALCTS AN ALCTE CLASSESveevveeeieeiieeiietiete ettt ettt et et e e st e saee et esseesseesaesseeseeseensesnnesneesseenseenes 29
3.5.2.1. GeNeral // = oo 29
3.5.2.2. Triger classes Of AlCTtS CLASSES ...c..ueitiertiiriiiieiie ettt sttt 29
3.5.2.3. Parameters and Value Notifying Attributes of Alerts Classesccevveveereeeriierieriereeieeieneens 30

3.0, StALE IMACKINESveieiiieiie ettt ettt ettt e et e st e e taeessbeesb e e sbeessbeeasseesbeensbeesbeesssaesseennaeennsean 31

3.6.1 GENETAL /| M cooooieiie e 31

3.6.2. States, Names of States, and CUITENt STALE............ooeeivviiiiieieieeeeee e eeeeee e eere e e e e e eeareeeenns 31

3.6.3. SHALE ALITTDULES ...eeevveeiieeiieeieeeeeetee e etee et e et e st eeesbeesbeeesbeessbeeesseessseessseessseensseessseensseessseenssens 31

3.64. Valid/Invalid // F5 80/ BERI ..o 33

3.6.5. INEHAL STALE ...veeeiieiieeieeieeee ettt ettt ettt e st e st e et et et e e st e esaeese et e e st e seenbeenaesneesneenaeenseenes 33

3.6.6. Transitions and State Transition classes / 1B & T State Transition classes..........ocoeveeveerennes 34
3.6.6.1. GENETal // = ..o 34
3.6.6.2. Trigger classes of State Transition CLASSES...........cuerieriieriieciieiesiereeieeie e eee et eeeaeseeens 34
3.6.6.3. Maximum Allowable Transition Time and Minimum Allowable Transition Time 35
3.6.6.4. Effective States fOr OPerations.........cccvieriieerieeriieeiieerieeesteeesieeesteessteeesseesseeesseessesssseessseessseesns 35

3.7, DiIaNOSHIC RULES ...oouiieiiiiieiieie ettt ettt e e et e et e esa et e e s e et e enseennesnnesneeneenes 36
3.8, Other FEatures // DLoovvooeieeeeeeeeeeeeeeeeeeeeeeeeee ettt ettt s st esenns 37
3.9. Condition EXpression // ZR1ET oo 38
4. FUNCTIONAL CLASS 39
A1, GENETAL// R ettt ettt ettt n e 39
4.2, Parent-Child Relation // Bl -BIR oottt 40
4.3. standard Functional Class // AEHER) 72 Functional Class...........coccoveveveveveveeeeeeieeeeeeeeeeeeeeseeeeeeeseneas 40
5. MEMORY FUNCTIONAL CLASS 41
5.0 GENEIAL /] R oottt ettt ettt enne 41
5.2, Design Parameters // GXET/ST A= i 42

52,10 GENEIAL// I oottt et 42

5.2.2. FirstAddress and LastAdAress......c.uiiuieeiiieiiieeiie ettt ettt esteeebeesteesnbeesnseesnsee e 42

523, MaximumUPLoadLength.........ccoociiiiiriieiieiieie ettt s sne e 42

524, ALGNMENTLENGLN ..ottt ettt nae e nneeneenes 42

T B O 0T 215 o) s RPN 43

53,10 GENEIAL// I oottt 43

TN TR Y] 334103 72 57 T T USSP 43

5.3.3. IMEIMOTYDUIMIP ...ttt eiee ettt e st e et e s te e et e sebeeesbeessteeasseesssaeasseesasaeasseesnsaansseesnseenssessnsesnnsenns 44

iii

1. INTRODUCTION // IZL&®IZ

1.1. PURPOSE/ BH®

The purpose of this document is to specify the method
to model functions of spacecrafts and their onboard
instruments. The model specified in this document
serves as a guideline for the functional design of
spacecrafts and their onboard instruments in the sense
that the functions are designed in a way that they can be
specified with this model.

This model sets a set of standardized methods to specify
functions of spacecrafts and their onboard instruments
and to manage electronically information of their
functions. This standardized model would make
systematic development of functions of spacecrafts and
their onboard instruments easier and make reusing
existing onboard instruments or parts of them practical.
Then, the ultimate purpose is to reduce the cost of
development of new spacecrafts and their onboard

instruments and to enhance their reliability.

The Generic Spacecraft Test and Operations Software
(GSTOS) specified in [R2] assumes that the design of
the spacecraft and its onboard instruments follows this

document and the Spacecraft Monitor and Control

JERG-2-700-TP001-NOTICE1

AEOBEMIE., FEHE (OFY. ALBELFH
BREH) LTOBRHERBDOHEEZETIVIET A
EEEDDETHD, AETEDDHETILIE. &
ETILTEDDENTEDLIICTFHELZOR
BB OMEZHRAITDIEVIERIZENT, £
DHRERETDHA FS 4 V2o TS,

COETIIE. FEECTOEBHEROBEETE
HDEHICZTDHEEDEREZEFHICEET 5.
FEILSIN-—HOFEEE5Z D, COEELS
NIZETIVIE, FEEBOCZOBEBEROMEEZR
HMICHARET2EERZICT D EHIC, BREDE
BB OZTO—HOBANAZEENLGLLOLET
b CNOLDORBULGTEHMIE., FH-LFHEEOL
DEEFEHBOFAFEIR FEHIFE L., E@EEZRL
TH5EIZHD,

[R2] MTE® B Generic Spacecraft Test and Operations
Software (GSTOS) &, FHECZTDEHMRFDH
FtHARE & Spacecraft Monitor and Control Protocol
(SMCP) [R3] IZfE->TWBEZHHRE LTS,

Protocol (SMCP) [R3]. The individual specifications
according to this model are supposed to be stored and
managed by the Spacecraft Information Base 2 (SIB2)
[R1].

Ftrz. RETIVIZHS B2 OEHRIX. Spacecraft
Information Base 2 (SIB2) [R1] [Tk > TETE. BE
TEENBESIND,

1.2. SCOPE // &

This document specifies the Functional Model of
Spacecrafts (FMS), i.e., how functions of a spacecraft
and its onboard instruments are specified.

This document does not specify how these requirements
are implemented with hardware or software.

1.3. APPLICABILITY / ¥HMH%

The specifications described in this document apply to
the GSTOS and the software which implements the
SIB2.

The specifications described in this document apply
also to the spacecrafts and their onboard instruments
and their ground systems for the projects that adopt the
GSTOS and the SIB2.

JERG-2-700-TP001-NOTICE1

AZE (. Functional Model of Spacecrafts (FMS), D
FY., FEHEOZTOBHEBBOHREZED L SIS
EHLEMNEHET D

AREFX, W—FOzT7PVYIT LD T7IZLBIN
SNERDEFIEDAETED LY,

ARE(CER T 4L, GSTOS &. SIB2 2FE%ET 3
Y7 b7 EIERT S,

ARZE(CFE T4, GSTOS & SIB2 %ALY
projects DFHEOTDREHFL T oD E
VATLIZHERT B,

14. REFERENCES/ BAEXE
1.4.1. Normative References // 5| X E
None. Lo

1.4.2. Informative References / && &

[R1] JAXA, “Definition of Spacecraft Information Base 2 (DSIB2)”, GSTOS 300-1.0, JERG-2-700-TP004,
March 2023.

[R2] ISAS/JAXA, “Generic Spacecraft Test and Operations Software (GSTOS) Requirement Specification”,
GSTOS 400, JERG-2-700-TP003, latest issue.

[R3] JAXA, “Spacecraft Monitor and Control Protocol (SMCP)”, GSTOS 200-1.1, JERG-2-700-TP002

(NOTICE1), December 2019 (March 2023).

1.5.
This document is organized as follows:

Chapter 1 (this chapter) states the purpose, scope, and
applicability of the document, and lists the references,
and notations used the

definitions, throughout

document.
Chapter 2 presents an overview of the FMS.
Chapter 3 specifies the Functional Object, which is the

core concept of the FMS.

Chapter 4 specifies Functional Class, which is used as
a template for defining the Functional Objects.

Chapter 5 specifies the Memory Functional Class,
which is a Functional Class for defining the Functional
Objects that represent onboard memories.

Appendix A lists all the acronyms used in this
document.

Appendix B shows an example of a Functional Object.

Appendix C shows the history of terminology changes.

JERG-2-700-TP001-NOTICE1

DOCUMENT STRUCTURE // RZDOHERK

FEFTRDBEYEKT %o

1 E (XE) F. XEOBW. SERVERLZR
RpHEHIZ, FETRHWIEHEXE. EE. AU
RELEETY .

2E(E, FMS 28T 5,
3E(E. FMS O FilEI8EE T & % Functional Object
EEDH D,

4 E[&. Functional Objects ZE&ET =D VL
BMELTHWSEDTH S Functional Class ZE &
Bo

5 B, FEHEREHEAT) #XRET S Functional
Objects ZEET S 126D Functional Class THD.
Memory Functional Class ZE®H 5,

Appendix A [, RETHWSBEL T,

Appendix B [, Functional Object D — 4l % R9 .

Appendix C &, AEBENDEEDEEZRY .

JERG-2-700-TP001-NOTICE1

1.6. DEFINITIONS AND NOTATIONS // B&R UREE

1.6.1. Terms defined in this document / ZETEHEh S HE

None. L,

1.6.2. Notations // K%

The following notations are used throughout this AZFRDRILERALD,

document.

with
“[Example n]”, where n is a positive integer) presents an

A paragraph that begins “[Example]” (or
example that is aimed to help readers to understand the

specification, and is not a part of the specification.

A paragraph that begins with “[Note]” (or “[Note n]”,
where 7 is a positive integer) contains an informative
note that is aimed to help readers to understand the
specification, and is not a part of the specification.

A paragraph that begins with “[Rationale]” (or
“[Rationale n]”, where n is a positive integer) contains
a rationale for the specification, but is not a part of the

specification.

A rationale may be simply a phrase or a (series of)
complete sentence(s). In the former case, the phrase
usually starts with a lower-case letter and it should be
interpreted as if it was preceded with an implicit partial
sentence of “The author of this document sets the
specification as such”. For example, “[Rationale] in
order to distinguish clearly X and Y.” means that the
author of this document sets the specification as such in
order to distinguish clearly X and Y.”

‘(B (FEf=IE (B n]" n IFEDEL) THFEFLE
BRI FEOHEROERZHTL-HDHITHY.
RO —E TN,

“GE] (Ft=1E “UE 0]’ n (FIEQOES) THREDEE
ElX, ZEOEHEDEBREZBIT 5 -HDMMER
FRHLIEEDOTHY . HHO—EBTIIAL,

‘TR (FFf=IE “[MRIL n]". n FIEEDEH) THAF
BEREIE, HHROBWEELELI-DTHY . Tk
a)_gﬂ—fﬁl"o

1.7. VERBAL FORMS / &REHRX

The following conventions apply throughout this
document:

a) the auxiliary verb ‘shall’ implies mandatory
conditions.

b) the auxiliary verb ‘should’ implies optional but
desirable conditions.

c) the auxiliary verb ‘may’ implies optional
conditions.

d) the auxiliary verb ‘can’ implies capability or
ability to do something.

e) the words ‘is’, ‘are’, and ‘will” imply statements
of fact.

The words ‘shall’, ‘should’, ‘may’ are highlighted
in red and bold font.

JERG-2-700-TP001-NOTICE1

AETRHUTOREY CHEWERYT B,

M2k lrhEE sy (X, BAER
THRT,

[RE] [k, FETHINHRE SN D4
RY,

MRV [E, FRSNDEHRETT S

[TED] [E fAINZETLENFRGEEZ
H_tj—o

o/ Z—2DEEkE, ERETRIXTH D,

&) lfnEEsimeng rh-RE-
BV [, SREOREHROEBDEITD 1=
. FF - KFTTY,

[F] AETR.EXRBEZEFHICERERELOT
WESITEXD shal’ DEREBEEL T[T &)
HEALTLS, #IZ, ‘shall DERFBLS TIX
rC&) IERET. MEF1 2AVTLS, F
= EX®D ‘may’ [CHIGT HEREELT.R
WM EVWSHETFZFEALTLS, #HIT, ‘may’
DIRFBLUSNT TRV (FERALTLEL,

TA,B, RUCl EWVWSREIE, EXD ‘AB,
and C' (IS L. TARUBRUC] THbD
BEER®RT S,

TA,B, £f=1XCJ] EVVSREIX, EXD ‘A,
B,orC" [ZxisL. TAFfEBFfI&XClI T
HHIEEERT S,

FED ‘a XXX ~the XXX &S RBIZHIG
L. BRERF HD XXX~ FDOXXX] &£V
KBREALD,

When a translation into Japanese is provided, the
original English version and its Japanese translation
are given in the left and right sides, respectively, in
principle, as in this paragraph. In some cases, e.g.
titles of sections and captions of figures/tables, the
English and Japanese versions are put in a single line
separated by “//” in this order (“English //
Japanese”) or in separate lines with no delimiter in
between (“English [Line-Break] Japanese™).

In most cases, technical terms are not translated into
Japanese. The English words in alphabet remain as
they are in their Japanese translation. The forms in
alphabet in English which distinguish the singular
and plural words remain as they are in the Japanese
version to preserve the information of the quantity,
although the Japanese language does not inherently
distinguish the singular and plural forms.

Technical terms are highlighted in green and in some
cases in blue. The latter consists of names of
documents and protocols, widely used technical
terms, and those locally used in some sections (e.g.
field names). Note that the first character of an
English word in a technical term is written in a
capital letter, except for that in widely used technical
terms.

JERG-2-700-TP001-NOTICE1

BARE~NDOPIRNAEFET 5154, RAIE LT,
COBREDESIC, REZERAICRL, BXRE
ZEAICRT . F-. EPRRDZ A MILEFIL,
HE.BREDIEIZ—FTHIC /| TRYD (&
Z /I BAEEL M. ZTICH T TR Y XFR
L (T%3FE [&47] BAREE)) T. e 9558
1H5,

2L DIHE. BMTAEOBREITHT, HHEE
EHET 5, 2T, BREBIZTHETILIZNY
BT S, FNLIEFERTHDHAKREXH
I2EWTHETIL 7Ry LRESND, BRE
DA ITEEE - BHBEORA I A, BHiE
DERZEFRDD. BRBXFIZEWLWTEH, &
EBOBEHN - EHEOEWVETILI7RY LT
ZTOFEFRLET b,

BiTAEEIREDEN-HEFT.BEIZEYE
FTCRY, AL, XS, JObaL4A. B
CAVLNTVSEMAE. R, AEHRD—
HBOEIZCLMGLAEVWED (Z74—ILF4A
%F) holad, ST, HMTAEE. LAV
LNTWSELDERE. EXMICKXFIRFEY
DEHETRELT 5,

2. OVERVIEW

2.1. GENERAL/ —f&

A model is a framework which represents something
from a certain point of view. This document specifies a
framework (hereafter referred to as the Functional
Model of Spacecrafts, FMS) which represents a
spacecraft and its onboard instruments from a
functional point of view. This chapter provides an
informative overview of the FMS specified in the

subsequent chapters.

2.2.

A function of a spacecraft or onboard instrument in this
model is an abstract representation of a job of the
spacecraft or onboard instrument in orbit, such as
performing an observation or an experiment. This
abstraction is made by focusing on the outcome that
outside observers can see when or after a spacecraft or
onboard instrument has performed a job, disregarding
how the job is performed inside the spacecraft or
onboard instrument.

The FMS specifies the functions of a spacecraft or
onboard instrument. If its functions are designed in a
way that they follow the specifications of this model, a
part of the methods for functional designs of different
spacecrafts and their onboard instruments will be
unified. Therefore, this model also serves as a guideline
for the functional design of spacecrafts and their
onboard instruments. In other words, this model also
aims at standardizing the functional design of
spacecrafts and their onboard instruments in terms of
how a spacecraft or onboard instrument is operated by

observers outside the spacecraft or onboard instrument.

JERG-2-700-TP001-NOTICE1

ETILEIER, HIBRL AN ERET H-HD
TL—LT—IDETHD, AEF. HWEENLEH
RO FHEOTOBERFERTT H-ODT
L— LT —% (LT . Functional Model of
Spacecrafts, FMS &E¥Y %) &EH D, REF. 5l
EHMCETED D FMS OBMEETRT,

PURPOSE OF THIS MODEL// COETILOEK

AETIVIZEWT., FEEBFISEBHEROHE
LI, FEEFLIEESEBFIISHNELTERT S
BHOCEBOEREDLSTEFHRIELLTERLEE
DTHD. COWMRIETIE., THET-ITEHE
BHAEEZERTLEEESEERICARDOA TH
—N\ARLZENTEHHREITIEAL. TOEEZ
FEHEBFELIBERBNBTEDLSIZEET S
MIERT 5,

FMS (&, HA5FEBEIIBREEFOREZED
Do COETIVITHWEEEZEDSIENTED &
SICFHMF X ZOEHEBBOMEERF T
(F. BELSFHEOTOEBMBOMEERI DA
EO—EAR—SNEEITHLE, T, D
ETIVIE, FEEOZOBHMBOMAERET I
TEHHARFAUITHE->TVS . SEWMEZ NI,
AETIVE. FEEOZOEEHMBOMAERTZ.
FHEEIBHERIEZDONEBOLT THF—/
LDERBLEVSIBANCIERELLT HFEEBEL
TW%,

2.3. FUNCTIONAL OBJECT

Since functions that a spacecraft or onboard instrument
has are generally complex, they are usually specified as
groups of functions according to their characteristics.
The model specified in this document refers to an entity
which has a group of functions of these kinds as a

Functional Object (see Chapter 3). The Functional
Object is the core concept in the FMS.

An entire spacecraft is a Functional Object. Any group
of functions of arbitrary granularity such as subsystems,
onboard instruments, and onboard software functions
are regarded as Functional Objects depending upon the
design of the spacecraft.

A Functional Object specifies how a particular job of a
spacecraft or onboard instrument appears from a point
of view of observers. The concept of the Functional
Object is based on the concept of the object used in
object-oriented programming. In object-oriented
programming, a unit of a program is defined as a class.
During execution of the program, an instance (which is
also called an object) is dynamically generated
according to the definition of the class, and the instance
executes the program. In the case of spacecrafts and
their onboard instruments, the concept of object-
oriented programming cannot be directly applied
because a spacecraft or onboard instrument is not
software but hardware (although software is used in
some parts of the spacecraft or onboard instrument).
However, the core concept is still applicable. In this
model of the Functional Object, the functions of a
spacecraft or onboard instrument are assumed to exist
permanently (although whether each function is
executable or not at a particular time depends on the
status of the spacecraft or onboard instrument at the
time). In summary, a Functional Object corresponds to
an instance in the software terminology, but exists
permanently unlike the counterpart in software.

If two or more instruments that perform the same job,
such as actuators with identical specifications, are
installed on a spacecraft, they are defined as two distinct
Functional Objects. In this case, the definition of these
multiple Functional Objects can be specified as a
template for generating these Functional Objects. A
template for generating multiple Functional Objects is
referred to as a Functional Class (see Section 4).

JERG-2-700-TP001-NOTICE1

—MRICFEBE I REEBFORBETERETHD
=8, TNLEZFOHMEICKE CTHEDTIL—T
ELTREEDD, AENEDDHETILTIE, &
DESHBBEDIIL—TE*#HEODBEREZ %
Functional Object ' % (3 ESH), Functional
Object [&. FMS IZHE T 5% ELEHBMETH S,

FHBEAIX, Functional Object TH D, £f=. F
EHHEOREICIE L. TDY TR T L, BEHES.
BEHY IO T7OEOBEELG EXTEDREDHE
BEDBRAY Functional Object EHHEIN D,

Functional Object [, FEEF IR BHBDOH S
BEDRELAA THF—NIZEDKSIZRZ BN %E
TE& B, Functional Object DRIE. TPV +
M7 S2 V0 TRWSA IO FOBE
[ZEDSWTWS, AP/ rERTRITS Y
JTIE, FOJSLOBEMEISRELTESE
b5, AT S LOETHEICIEYI SAERIZHENA
VARUR (AT REBWNDS) HBIMIZE
BEh, TS VRE VAN TAY S LERTT
%, FTHEOLTORHMBOSEIX., FTHEE
(THRBHEBEY I Y7 THELS (FEBELE
TOREKBFO—MATY I bz 7EANSIC
&) N—FKDz7THB o, 77>y ME
M7ATSI VI DEZACZEERERITELRL,
LL. BT ERARETH S, Functional
Object ICEAT 2ARETILTIE., FEHEEIXEBE
HERDOEEEIIKEMICEETDILDERET D
(:zfZL. HEABFEDOHRIZELNTERENDH
REMEITHRENENE., TORRTOFERET:
FREBEFOREICIKEFET D), ENTDHE.
Functional Object [V 7 bz 7ORABEDA VR
BUORITHIET BN, A VRAZ VR EFELGY K
BMICHFEET S,

B—HO7 9 F1I—42%. FEEICRLLSE
EIIOMBEAZDULEHEINTWEEE. Th
5= DD HIME AL Functional Objects & L TRERE
nd, TOHEE. CNHEHD Functional Objects
DEEIL. T 5D Functional Objects ZHERT 5
VHGBELTHRETE S, HHD Functional
Objects ZHEMT 5D VEEDE% Functional
Class £#9 %5 4 IHSH),

Functional Objects can be monitored and controlled by
other entities, i.e., entities outside the spacecraft (for
example, spacecraft control systems and spacecraft test
systems) and/or other Functional Objects on the
spacecraft. This document does not specify methods of
communications between Functional Objects and other
entities (see also Section 2.5).

Some entities monitor Functional Objects but do not
control them. An entity that monitors and controls
Functional Objects is called a Controller (see Section
3.1).

The concepts used to specify a Functional Object
include the Attribute, Operation, Event class, State

JERG-2-700-TP001-NOTICE1

Functional Objects (&, HDBHER. DFY. F
HENBOBRER BIZETFEEEF X TL
PFEEARIOATL), FEELOMMOD
Functional Objects D—AMNMAMN TERFIHTSE
%o ARZEIL Functional Objects & fthDIERLER DR
DREFERIEIEDHLZL Q5HLSHR),

—ERDERMERIL Functional Objects ZE51R 9 5 A%
HIEX4T4 42 LN, Functional Objects % ES 48 K& UVl
I BEREZEIL Controller EFEIEN S (3.1 IS
),

Functional Object ZTED B T=HIZHWSBZICIL.
Attribute, Operation, Event class, State Machine, &

Machine, and Diagnostic Rule (see Sections 3.3, 3.4,

3.5, 3.6, and 3.7, respectively).

An Attribute of a Functional Object is a variable
representing a status of the Functional Object. The
values of Attributes of a Functional Object at a given
time can be obtained by other entities using telemetry

messages.

An Operation of a Functional Object is an action
performed by the Functional Object and is invoked
from Controllers using a telecommand message. The
values of some Attributes of a Functional Object can be
set with Operations invoked by Controllers.

An Event class of a Functional Object is a classification
of an event (an occurrence of a thing that has a

particular significance). Events of some Event classes
are detected by the Functional Object itself. The event
that is important to other entities can be reported to
them using telemetry messages. The report is referred
to as an alert and its classification is referred to as an
Alert class.

A State Machine of a Functional Object specifies how
it behaves with a finite number of states and transitions
between them (see Section 3.6).

A Diagnostic rule of a Functional Object is a rule used
by other entities to diagnose whether the Functional
Object is functioning correctly or not.

U Diagnostic Rule (ZFh., 3.318, 3418, 3.5
g, 3.6,JH., RU3.7IESE) NEEND,

Functional Object @ Attribute &, Z @ Functional
Object DIRREERITEHTHD. HIFRIZHIT
% Functional Object M Attributes MBI, telemetry
messages ZAL, HMOBRERICE>TRETE
%o

Functional Object @ Operation (£, %@ Functional
Object BMTSEMETH Y . telecommand messages &
FALy . Controllers IZ& » THEUH &N %, Functional
Object M Attributes D—EPIE. Controllers AAFEUH
L 7= Operations ICK Y BZERETE %,

Functional Object @ Event class (&, event JFEDNE
KEHITHHEKBEORE) ORETHLH, —HD
Event classes @ events [&. % ® Functional Object B
AKTERET S, hOBRERICEYEEL event
. TN 5[, telemetry messages ZFHLY, BEIT
DENTED, COBEHMZE alert EFFL. ZTD7HEE
% Alertclass E#9 %,

Functional Object @ State Machine &, BHR{EDIK
RBREZTORIDERICE>T, EOKSICEIMET S
NEEHDHLDTHD B.6IBSH),

Functional Object @ Diagnostic Rule [&. & ®
Functional Object MIEFICHEBEL TLWSIHLELZF
DI E-ODRAITHY . tOERERNAL
%o

2.4. SPACECRAFT INFORMATION BASE 2

The definitions of the Functional Objects specified with
the methods specified in this document can be
registered in the Function Definition Part of the
Spacecraft Information Base 2 (SIB2) [R1]. The SIB2
is a database to manage information about a spacecraft

or onboard instrument electronically. The information
about the functions that a spacecraft or onboard
instrument has should be managed uniformly, using
this database, throughout all the phases concerning the
spacecraft or onboard instrument, including designing,
testing, and flight operations.

10

JERG-2-700-TP001-NOTICE1

RKETED=AZEITHEWLEDT= Functional Objects
MDEZEIL. Spacecraft Information Base 2 (SIB2) [R1]
DHEERMICEFZE T HENTESD, SIB2 &, F
EREIRERERECEAT IEREETFHICER
TEILODT—IR—XATHD, FEBETE
BB OMEEICE T S EmMIET. B&EH. HER.
RITERZEC TOFHBE - IBEBHRFICED
B3ETNDIz—RX&BLTCIDT—ER—RXT—
TEBIARETHD,

2.5.

JERG-2-700-TP001-NOTICE1

COMMUNICATIONS BETWEEN FUNCTIONAL OBJECTS AND OTHER ENTITIES

FUNCTIONAL OBJECTS &thDERERDOBDE(E

A Functional Object communicates with other entities.
A signal for communication to a Functional Object is
referred to as a telecommand message and that from a

Functional Object is referred to as a telemetry message

in this model.

Although this document does not specify the methods
for communications between a Functional Object and
other entities, it is recommended that the Spacecraft
Monitor and Control Protocol (SMCP) [R3] is used to
perform the following operations (the types of
telecommands / telemetries in [R3] are shown in

parentheses):

a) to invoke Operations of Functional Objects
and to set the values of Attributes of the
Functional Objects from a Controller
(ACTION Telecommand or SET
Telecommand),

b) to report the values of Attributes of Functional
Objects to other entities (VALUE Telemetry

and NOTIFICATION Telemetry),

to request reporting the values of Attributes of
Functional Objects from Controllers (GET
Telecommand),

d) to report an alert of an Alert class to other
entities (NOTIFICATION Telemetry),

to request uploading and dumping memory
data of Memory Functional Objects from
(MEMORY UPLOAD
MEMORY DUMP
Telecommand, respectively), and

Controllers

Telecommand and

f) to report memory data of Memory Functional

Objects to other entities (MEMORY DUMP

Telemetry).

The types of telecommands/telemetries in [R3] are
mentioned in this document in the sections
described in Table 2-1.

11

Functional Object [FIDIBRERLBIEZEZITI. X
ETILTIX, % Functional Object ~D@EEIZA
WLWBES % telecommand message, 83 Functional
Object H b D & 15
message &Y B,

ARE(L. %5 Functional Object EMDERERD
RID@IEAEZEE DI LAS, Spacecraft Monitor and
Control Protocol (SMCP) [R3] ZRAWTUTDOEE
EEITITHENHERIND, GH. UTOREFE
ETIE.AvaAIC R3] IZHITHTLaATU R
TLAN)DRERERT,

ICHWS{EE % telemetry

Functional Objects @) Operations @ .
Controller IZ&k HFEUH L BT Attributes D
EDEHE (ACTION Telecommand Ff=I&
SET Telecommand)

b) Functional Objects 0 Attributes DED. i
DEREZRA~DBEH (VALUE Telemetry &

U NOTIFICATION Telemetry)

Functional @ Attributes O{ED EED .
Controllers A 5 MER (GET Telecommand)

Alertclass @ alert @D, hDERERZ~ADRE
40 (NOTIFICATION Telemetry)

d)

Memory Functional DA EYT—E DT v
TJO—FRUAVT (GR&HEL) D,
Controllers M B D ER (ZFhnE .
MEMORY UPLOAD Telecommand & U
MEMORY DUMP Telecommand)

f) Memory Functional QA EY T—2 D, b
DEBLERADEXH (MEMORY DUMP

Telemetry)

R3] [ZBIFBHTLIATUER-TLAMIED
FBAllL., RE(ZHLVT, Table 2-1 R T EHRT
TEkEhTWL3S,

JERG-2-700-TP001-NOTICE1

Table 2-1: Type of Telecommands/Telemetries in [R3]
[R3IZHIFZBTLaATUF - FLA N DIES

Type

Section in this document

ACTION Telecommand

3.3.1 (Attributes), 3.4.1 (Operations)

SET Telecommand

3.3.1 (Attributes), 3.4.1 (Operations)

GET Telecommand

3.3.1 (Attributes)

VALUE Telemetry

3.3.1 (Attributes)

NOTIFICATION Telemetry

3.3.1 (Attributes), 3.5.2.1 (Alert classes)

MEMORY LOAD Telecommand

5.3.2 (Memory Functional Class, MemoryLoad)

MEMORY DUMP Telecommand

5.3.3 (Memory Functional Class, MemoryDump)

MEMORY DUMP Telemetry

5.3.3 (Memory Functional Class, MemoryDump)

12

3.

JERG-2-700-TP001-NOTICE1

METHOD OF MODELING WITH FUNCTIONAL OBJECTS

FUNCTIONAL OBJECTS IZ& BDETILED HE

3.1.

GENERAL // —f&

Functions of a spacecraft or onboard instrument shall

be specified with entities each of which is referred to as

a Functional Object. A Functional Object has a group of

functions that are easy to be specified and understood.

The Functional Object is an abstract representation of a

spacecraft or onboard instrument function to express

solely how they appear to outside entities.

The concepts used to specify how a Functional Object

behaves are summarized in Figure 3-1, which include

the Attribute, Operation, Event class, State Machine,

and Diagnostic Rule (see Sections 3.3, 3.4, 3.5, 3.6, and

3.7, respectively).

——

n
3.2. Functional Object
- Effective Condition Expression

FEHBRFT-EIBBRFOREZ. Thth
Functional Object E¥F HEHERZRHAVTED
% &, Functional Object [, EHDDHLEET S
DEBRBITHEDESICTIL—TIESni-HEEZEH
D, Functional Object (&, S ERDERERN L ED
KINCRADIDAZEZRT . FEEE(TBERK
FOMEEZHRIELEZRTETH S,

Functional Object MED K S ICEMET 2D ZEED
BDICAWSEEDY T % Figure 3-1 2R,
5 1Z1&. Attribute. Operation. Event class. State
Machine & U Diagnostic Rule (ZFnZ#4., 3.3 &,
3418, 35IH, 3.6 1H, RU37ESHR) NEFh
%o

A 0—“ B Composition (A has B)
Concept A 4—— B Generalization (B is A)
- _Cumpcs\tmn typaﬁ_
- (Optional Composition) A €---- B Dependency (B depends A)

A, B: Concept, n: multiplicity

n

3.3. Attribute
- (Initial Value
- Effective Condition Expr.

A

3.5. Eve
- (Trigger
n

‘ 3.3.4. Complicated Attribute

‘ 3.43.NOP ‘

3.4. Operation
- Criticality Level
- Effective Condition Expr
*>

3.3.4. Binary
Sequence Attribute
3.3.4. Scalar Attribute

Parameter

n

n

nt class
Condition}

1
3.5.2.2. Trigger class

n

3.7. Diagnostic Rule

n n

3.5.2. Alert class 3.6. State Machine

Parameter

n n 0.1

Event trigger

QOperation trigger

3.6.6. State Transition class
- Begin State : State
- End State : State
- (Maximum Allowable Transition Time)
- (Minimum AHowiﬂe Transition Time)

3.6.2. State Initial State
- Name

- [Action Limit)
- (Caution Limit)
- (Valid Range)

3.3.6 Numerical Value Attribute

|
| 3.3.5. Enumelﬁtive Attribute |1—

n

3.3.5.2. Value

- Enumerative Name

- Criticality Level

3.6.3. State Attribute

Spontaneous
trigger

n

3.6.6.2. Trigger class

Figure 3-1 Summary of the Concepts to Specify Functional Objects
Functional Objects ZEHSDICHWS DY <

1

3

To specify various conditions including the Effective-
Condition of a Functional Object, Attribute or
Operation (see Sections 3.2.3, 3.3.2, and 3.4.5) or the
Trigger Condition of an Event class, an expression
referred to as a Condition Expression is used (see
Section 3.9).

Assignal for communication to a Functional Object from
another entity is referred to as a telecommand message

and that from a Functional Object to another entity is
referred to as a telemetry message in this model. An

entity which sends telecommand messages is referred
to as a Controller.

14

JERG-2-700-TP001-NOTICE1

Functional Object, Attribute, %2 Operation MDA NS
 (3231H.3321H, RU 34518SH) * Event
class @ Trigger Condition (3.5.1.2 IES M) F. &¥&
DEUHZEEHDIDIZ, EHXEHTLIAERND
(BYIESH),

AETILTIX, % Functional Object ~thDIERL
EZEHILOBEICHWSIES % telecommand
message, # 4 Functional Object M SHDERER
~ANDBIEICHWBIES % telemetry message &EFRY
%, E£1-. telecommand messages ZFiXIET DB E
% % Controller £¥59 %,

JERG-2-700-TP001-NOTICE1

3.2. FUNCTIONAL OBJECTS

3.2.1. General / —f&

An entire spacecraft shall be represented by one FHEEEKIET—DLIEMD Functional Objects ZHFD
Functional Object which contains one or more —20) Functional Object TREINDZ &, HAF
Functional Objects. Any Functional Object of a BEHEDULIAZLES Functional Object 3, TDFHIE
spacecraft is either directly or indirectly contained in 2{K%FKY Functional Object (2, EEHMHFEHER
the Functional Object that represents the entire MDfAINMMNTEEND,

spacecraft.
.f{j .

(1) Acceptable FOs (2) Unacceptable FOs

FO: Functional Object

parent
FO name

Figure 3-2 Acceptable / Unacceptable Combination of Parent-Child Relation between Functional

Objects // Functional Objects DFFRERTHBIN S - FEShLGVEAEHE

The names of the Functional Objects follow the Functional Objects DARFIIE. [R1] DIRANZHE S,
convention in [R1]. For xxx, a name cannot be allocated xxx [ZI&. FRAIZHWRFTZEIY B TEHEETE
according to the convention. A AN

15

Parent-Child Relation // 3 FBE{%

A Functional Object shall contain zero or more

3.2.2.

Functional Objects.

[Example 1] Functional Object /a in Figure 3-2 (1)
contains Functional Object /a.b and Functional Object
/a.c.

A Functional Object shall not be directly contained in
two or more Functional Objects.

[Example 2] Functional Object d and Functional Object
e in Figure 3-2 (2) contain Functional Object f, which
is not allowed.

When a Functional Object contains one or more
Functional Objects in it, the former is referred to as the
"parent Functional Object" of the latter and the latter are
referred to as "child Functional Objects" of the former.
Furthermore, generalized terms of these are introduced;
the Functional Objects at any upper and lower layers of
the hierarchy of the parent/child relations, such as a
parent of a parent (upper layer) and a child of a child
(lower layer), are referred to as "ancestor Functional
Object(s)" and "descendant Functional Object(s)",
respectively.

16

JERG-2-700-TP001-NOTICE1

Functional Object &, Functional Objects Z ¥ B@&LL
B L,

[f51 1] Figure 3-2 (1) @ Functional Object /a I,
Functional Object /a.b & Functional Object /a.c &
IS

Functional Object [£, =D LL_E® Functional Objects
[CREEMIZEENG N &

[16] 2] Figure 3-2 (2) @ Functional Object d &
Functional Object e &, Functional Object f Z &L A3,
ChIEEFENELN,

% Functional Object [T—DLL_E® Functional
Objects NEFEFNDBE. BIBEREOD TR
Functional Object] &FFL. BFEITAIED F
Functional Objects] E#MT B, SHIZ, ThibZE—
BALL-FEZEAT S, HOH (LERERE).
FOF (THER) F. B/ FEROEED LAE
BRUTHEEEIZH S Functional Objects &, Fh
Zh . M# 5% Functional Object(s)] BT TF#
Functional Object(s)] &#T B,

3.2.3.

JERG-2-700-TP001-NOTICE1

Effective-Conditions of Functional Objects (Valid/Invalid and Effective-Condition Expressions)

Functional Objects DE#FEH (AR/EDRUFEDEHER)

A Functional Object (except for the Functional Object
representing an entire spacecraft) shall be either valid
or invalid at a given time. When a Functional Object is
invalid, it shall suspend all of its functions.

The condition which determines whether a Functional
Object is valid or invalid at a given time is referred to
as the Effective-Condition of the Functional Object.

For each Functional Object except for the Functional
Object representing the entire spacecraft, its Effective-
Condition shall be specified with a Condition
Expression referred to as the Effective-Condition

Expression.

The Functional Object representing an entire spacecraft
shall be always valid. As for the other Functional
Objects, one shall be valid when the evaluation result
of its Effective-Condition is true and when its parent
Functional Object is valid, or else it shall be invalid.

17

Functional Object (FHMEAKZ KT Functional
Object ZB<) [F. HARRIZEIMNED DN
MNTHD &, $H5 Functional Object HDNEIN L5
B, TOHRBOETEFLELTVSI L,

% BEFR (T Functional Object DA MESI A ZF R
BHBEHEE. £ D Functional Object DERNEH &
e b,

FEHE LK EZ KT Functional Object ZFHR< &
Functional Object IZ, EEHX LT HF 4K
T. TDEDNFEHEEDHDH &,

FH#ELAEERT Functional Object £, FBIZHZN
THHZ &, DD Functional Object (&, ZD
FOEHAZFELIBERIAETHY .. hD. R
Functional Object WENTHIHE. ENTHSH
Lo SHELGLLTNIEENTHDZ &,

JERG-2-700-TP001-NOTICE1

3.3. ATTRIBUTES

3.3.1. General/ —§&

A variable that represents a status of a Functional Object
at a given time is referred to as an Attribute of the
Functional Object. The values of Attributes of a
Functional Object at a given time should be able to be
obtained by other entities using a telemetry message. A
Functional Object shall have zero or more Attributes.

[Note 1] In [R3], the values of Attributes are contained
in a telemetry message called a VALUE Telemetry. The

& % Functional Object DHAHAFRICHITHKRE
RITEHZE. £ D Functional Object M Attribute &
mI b, HAHARRITE TS Functional Object D
Attributes MBI, telemetry message VT,
DERERICEK-TRETETEINETTH S,
Functional Object [&, ¥ BA{ELLE®D Attributes Z#F
DI &,

[3¥ 1] [R3] TI&. Attributes D fEIF. VALUE
Telemetry & FEIEAL B telemetry message [CEH D,

values of Attributes are also contained in a telemetry
message called a NOTIFICATION Telemetry.

[Note 2] In [R3], the values to be set for Attributes are
contained in a telemetry message called a SET
Telecommand or an ACTION Telecommand.

[Note 3] In [R3], a VALUE Telemetry is generated by a
Functional Object spontaneously or in response to a
request in a telecommand message called GET
Telecommand sent from a Controller.

The values of some Attributes of a Functional Object
can be set by Controllers. In order for a value of an
Attribute of a Functional Object to be set by a
Controller, an Operation of the Functional Object shall
be invoked (see Sections 3.4.2 and 3.4.4.1). Whether
the value of an Attribute has been set correctly or not by
a Controller can be verified by the Controller by
inspecting the telemetry value of the Attribute.

18

F1=. Attributes DfEILX. NOTIFICATION Telemetry
EME(EN B telemetry message [Z2HEDH B,

[E 2] [R3] TI&. Attributes IZERE T HEIX SET
Telecommand F f=[& ACTION Telecommand & FFIE
N % telecommand message IZ& & 5,

[7¥ 3] [R3] TIlX. VALUE Telemetry &, Functional
Object IZ&k > T, BEMIZ. FfIX. Controller A
5EE S NT= GET Telecommand & MEE N B
telecommand message DBRIZHE LT, £ T
%,

Functional Object @ Attributes (D —&BI&. Controllers
MEZHZETE S, HSD Functional Object D
Attribute MfEZ Controller MERET BIZIE. FD
Functional Object @ Operation ZFFUNH T & &£(3.4.2
HRUY 3441 IBSE), 5 Controller B%H %
Attribute DEZEEICRE LEZNEMNE. TD
Controller BXF @ Attribute DT LA ~J{EZFN
HDETHRIETE %,

3.3.2.

JERG-2-700-TP001-NOTICE1

Effective-Conditions of Attributes (Valid/Invalid and Effective-Condition Expressions)

Attributes DERNEH (BR/MIBTAEHEX)

An Attribute shall be either valid or invalid at a given
time.

When an Attribute is valid, an Attribute shall take one
of the values in the set specified for the Attribute.

When an Attribute is invalid, its value has no
significance and cannot be reset by a Controller. In that
case, the Functional Object that has the Attribute shall

ignore requests received from Controllers.

A condition which determines whether an Attribute is
valid or invalid at a given time is referred to as an
Effective-Condition of the Attribute.

For each Attribute, an Effective-Condition shall be
specified with a Condition Expression referred to as an
Effective-Condition Expression.

An Attribute of a Functional Object at a given time shall
be valid when the Functional Object is valid and when
the evaluation result of the Effective-Condition
Expression of the Attribute is true, or else it shall be
invalid.

3.3.3.

For the range or set of the values that each Attribute can
take, a Criticality Level shall be specified. The
Criticality Levels are used by an entity that monitors

Criticality Levels of values

and controls a Functional Object to diagnose whether
the Functional Object is functioning correctly or not.

The Criticality Level of a value shall be one of Action,
Caution, and Normal.

- When the Criticality Level of the value of an Attribute
of a Functional Object is Action, it shall indicate that

the Functional Object is in danger (for example, the
Functional Object approaches permanent failure).

- When the Criticality Level of the value of an Attribute
of a Functional Object is Caution, it shall indicate that
caution is needed for the Functional Object (for
example, the Functional Object has temporarily ceased
functioning).

- When the Criticality Level of the value of an Attribute
of'a Functional Object is neither Action nor Caution, the
Criticality Level is Normal.

19

Attribute |£, HAIBFRICEIMENDRINNTH
é — & o

H B Attribute NEM TH B IHE . H B Attribute (&,
Z D Attribute [ZTEOH bN=-EERNDED A NI ZF
EBHZ &,

H 5 Attribute NEHMTHDHE. TOEIFEKE
B1=9. Controller DNSHEEET HEIETERLY,
ZTDHEE. TO Attribute Z$D Functional Object
[& Controllers MO RZIELI-ERETE RIS &,

H DB EIZ Attribute BAEMEMD RO B EH
#. D Attribute DENEHEENRT S,

& Attribute I, BREHGLEMT HEHHKICTH
MEHEEDD L,

& % Functional Object M & B Attribute £, &H BB
BT, £ Functional Object BNEZTHY . MO,
Z D Attribute DEMEHREFHEL-HERNVET
HHEE. AITHD I L, SHHELITNILEN
THd &,

ZTNEND Attribute KR Y FHEDFHEF = 1L5E
&IT%® L T, Criticality Level EH D &,
Criticality Level [&. & 4 Functional Object % Ez#R
9 DEHERNI. ZO Functional Object HNIEHE
ICHEEL TV SO BELDEMICAWLS,

& BED Criticality Level [, Action, Caution, BT
Normal DfAINMTHS Z &,

- 3 % Functional Object @ Attribute @ fE D
Criticality Level A%, Action THDEHEH. TD
Functional Object NERTHSE (HIZIEZTD
Functional Object AMEABEIZAM > TLNSE) &
~Y &,

- % % Functional Object @ Attribute O fE M
Criticality Level A%, Caution THDEE. TD
Functional Object [ZIZFBENABETHIE (FIZ I
Functional Object MS—HFFRIICHEREFLE L TS)
ZRY &S

- 3 % Functional Object @ Attribute @ fE D
Criticality Level A%, Action T% Caution 2 TH
LMEE. £ O Criticality Level [&, Normal T$H 5,

3.34. Initial Value

An Attribute should have a specific value referred to as
an Initial Value. If an Attribute has the Initial Value, the
Attribute shall take the value of the Initial Value when
it becomes valid. If an Attribute does not have an Initial
Value, which value in the specified set the Attribute
takes is not predictable when it becomes valid.

3.3.5.

An Attribute shall take one of the values in the set
specified for the Attribute. An Attribute which takes a
value of a simple data type (such as an enumeration type
or integer) is referred to as a Scalar Attribute. An

Scalar Attributes and Complicated Attributes

JERG-2-700-TP001-NOTICE1

Attribute [& Initial Value &¥f 9 DHFEDEEHF O
=THDH, HD Attribute A Initial Value ZHFHD15
B.Z D Attribute (L BRI AE 5 F=FRIZ Initial Value
DIEZE D Z &, 5 Attribute AY Initial Value Z 5
=HWMEES., A%cE & ZFI2, EHLON-E
EHADEDMNE ESNIFHFAETH D,

H 5 Attribute £, F D Attribute [CEOH GNI-EE
ADEDRININEE D L, BitigT—4238 (5]
BROBBHE) OEZX L 5 Attribute & Scalar
Attribute EMF B, Flz. FYEHGT—2E (B

Attribute which takes a value of a more complicated
data type (such as an array or structure type) is referred
to as a Complicated Attribute.

A Complicated Attribute whose contents is not modeled
in the FMS is referred to as Binary Sequence Attribute.

[Note] Except for
complicated data types have not been implemented in
the tools of SIB2/GSTOS yet. Their proxy is under

review.

Binary Sequence Attribute,

20

SR OEBEREE) OEE & 5 Attribute &
Complicated Attribute & #3195,

Complicated Attribute D 3 B, FMS TIEZDHNEZ
ETILIE LAELVE D % Binary Sequence Attribute &
w95,

[;£] Binary Sequence Attribute ZfRE, ML T—
B B(F SIB2/GSTOS MDY —ILTHELEEEEIATL
TULA, REKEBRED,

JERG-2-700-TP001-NOTICE1

3.3.6. Enumerative Attribute
3.3.6.1. General / —fi&

A Scalar Attribute whose value (integer number) is
labeled with a name (identifier consisting of alphabets
and numbers) is referred to as an Enumerative Attribute.

B (BHE) HNLE] (FILIT7RNY FRUBFET
BREINDHBANF) TIRNILEINT Scalar
Attribute & Enumerative Attribute & #8395,

3.3.6.2. Values and Enumerative Names // fE % U8 Enumerative Names

Enumerative Attributes shall have discrete values (such
as the current mode of an instrument). For an
Enumerative Attribute, the Valid Value Set, which is the
set of the values that the Enumerative Attribute can
take, shall be specified. For each of the values, a name
referred to as an Enumerative Name shall be specified.

When an Enumerative Attribute is valid, the value of
the Enumerative Attribute shall be one of the values in
the Valid Value Set of the Enumerative Attribute. When
an Enumerative Attribute is invalid, the value of the
Enumerative Attribute may not be one of the values in
the Valid Value Set of the Enumerative Attribute.

3.3.6.3.
For a value in the Valid Value Set of an Enumerative

Criticality Level

Attribute, a Criticality Level shall be specified (See
Section 3.3.3). The Criticality Level of a value is one of
Action, Caution, and Normal.

[Note] Diagnosis with more complexed conditions can
be specified with Diagnostic Rules (See Section 3.7).

21

Enumerative Attributes [&, BERUE (BERDIREDE
—F%) D52 &, $ 5B Enumerative Attribute [Z
%t L T. F® Enumerative Attribute HYER Y 15§ 5 {ED
£8THA Valid ValueSet ZEOH D &, £z, =
NS DEDS <12 Enumerative Name & #3195 BRIl
FEHD &,

Enumerative Attribute D {EI&. £ D Enumerative
Attribute MENGIZEE . €D Enumerative Attribute
@ Valid Value Set DRDEND—DTHSH &,
Enumerative Attribute D {EI&X. € D Enumerative
Attribute DNENRIHE . € D Enumerative Attribute
@ Valid Value Set DRDED—DTHEL TRLY,

Enumerative Attribute 0 Valid Value Set ROE(Z 5%t
L T.Criticality Level ZE$H S Z & (3.3.3IESH),
& B ED Criticality Level (X, Action, Caution, BT
Normal DEAINNTH %,

DE] FYBRHLGEHICK D28 % . Diagnostic
Rules ICTEDHDIENTE S B7EHSHE),

3.3.7. Numerical Value Attribute
3.3.7.1. General / —fi&

A Scalar Attribute whose values are not labeled with
names is referred to as a Numerical Value Attribute.

JERG-2-700-TP001-NOTICE1

EMBZEITINILINTULVELY Scalar Attribute %
Numerical Value Attribute &F#33 3,

A Numerical Value Attribute shall have either a
continuous value (e.g. a temperature) or a discrete value
(e.g. values of a counter: 0,1,2, ...).

3.3.7.2. Valid Ranges

A pair of upper and lower limits, referred to as Valid
Range, may be specified for a Numerical Value
Attribute. If a Valid Range is specified for a Numerical
Value Attribute, the Numerical Value Attribute shall
take a value within its Valid Range (for example, due to
physical limitation of the sensor that measures the value
of the Attribute).

When a Numerical Value Attribute is valid, the value of
the Numerical Value Attribute shall be in the Valid
Rang of the Numerical Value Attribute. When a
Numerical Value Attribute is invalid, the value of the
Numerical Value Attribute may not be in the Valid Rang
of the Numerical Value Attribute.

3.3.7.3.
Another pair of upper and lower limits, referred to as an
Action Limit, may be specified. For a Numerical Value

Attribute, another pair of upper and lower limits,
referred to as a Caution Limit, may also be specified.

These limit values are used by an entity that monitors
and controls a Functional Object to diagnose whether
the Functional Object is functioning correctly or not.

When the value of a Numerical Value Attribute falls out
of the range of its Action Limit, the Criticality Level of
the value shall be defined as Action. When the value of
the Numerical Value Attribute falls within its Action
Limit, but out of the range of its Caution Limit, the
Criticality Level of the value shall be defined as
Caution. Otherwise, the Criticality Level of the value
shall be defined as Normal.

[Note] Diagnosis with more complexed conditions can
be specified with Diagnostic Rules (See Section 3.7).

22

Numerical Value Attribute [&. E#E (FIZIE. B
E) NEERE WIAX, hooFE: 0,12,...) D
Ahmh—AZzHE DI &,

Numerical Value Attribute [Z[& Valid Range & #£9
52— HOLEEEL TREZEHTREL, 5
Numerical Value Attribute IZ Valid Range % X8 7=
BE . £ ® Numerical Value Attribute (£, & ® Valid
Range HDEDHERMD & (FEZIE. ZD
Attribute DEZBIE T S EEDOMEMIFIHIIC &L
Y

Numerical Value Attribute MDfBEIX. # @ Numerical
Value Attribute B EZNEEIFEE . £ D Numerical Value
Attribute @) Valid Range R T# % C &, Numerical
Value Attribute @ fE I£ . % 0 Numerical Value
Attribute MWEEIZTE . £ O Numerical Value
Attribute @ Valid Range N TH { TRLY,

Action Limits, Caution Limits, and Criticality Level

Numerical Value Attribute [Z1&, Action Limit & #d
SR DO—#DLRIESL TRIEZED TERLY,
Numerical Value Attribute [Z[&. Caution Limit & Ff
THRMD—HDLEEL TRELEDHTEL,

hoDRERMEIX. 5 Functional Object ZEER
HlEd A ERN. €D Functional Object AVIE
BIZHELTLSILEIDBHIZANS,

% Numerical Value Attribute DIEA, Z D Action
Limit QEHEZNNT-HZE. TDIED Criticality
Level [& Action EEEEN D &, TD Numerical
Value Attribute DfEAY, Z D Action Limit DRI
IR%E %% Caution Limit DEEZENNDZEZEE. TD
{E® Criticality Level [& Caution EEEIN D &,
SHRITNIE, ZDOED Criticality Level & Normal
LEEREIND T L,

GE] KFYBHLBEHICKDZE % . Diagnostic
Rules ICTEHSIENTES (3.71ESHE),

JERG-2-700-TP001-NOTICE1

3.4. OPERATIONS

34.1. General/ —§&

An action performed by a Functional Object (e.g. to set
a value to an Attribute) is referred to as an Operation of
the Functional Object. A Functional Object shall have
zero or more Operations.

[Note 1] Most Functional Objects have one or more
Operations.

An Operation of a Functional Object shall be invoked
when the Functional Object receives a telecommand

message from a Controller.

[Note 2] In [R3], an Operation is invoked with a

telecommand message called an ACTION

%% Functional Object NEITT HEE (BRI,
Attribute DIBEZEERE T %) %&£ D Functional Object
@ Operation &E#MF B, Functional Object &, € R
BLLE®D Operations ZFED = &,

[(¥ 1] [Z& A E®D Functional Objects (£, 1 DRLE
@ Operations Z 2D,

Functional Object @ Operation (&, %@ Functional
Object ¥ Controller A 5 telecommand message % 5%

ELERICHUTHENE &,

[2] [R3] T I . Operation & ., ACTION
Telecommand & FE[Eh B telecommand message T

Telecommand. An Operation is also invoked with a
telecommand message called a SET Telecommand.

23

FEUH 3, Ff=. Operation [&, SET Telecommand
EME(EN B telecommand message THIEEUVH T,

3.4.2.

The rule for changes of Attribute values after an

Attribute Change Rules

execution of an Operation is referred to as the Attribute
Change Rule of the Operation.

Functional Objects should be designed in a way that the
values of one or more Attributes change as a result of
execution of an Operation except for the cases in which
it is physically impossible to do so due to design
constraints. If so designed, whether an Operation has
been executed correctly or not can be verified by
checking whether the Attribute values that are supposed
to change as a result of the execution of the Operation
have actually changed or not.

For an Operation, zero or more Attributes whose values
are predictable constant values after execution of the
Operation shall be specified. For each of the Attributes,
a constant value after execution of the Operation shall
be specified. The entity which sends a telecommand
message to invoke an Operation should verify that the
values of the Attributes are the specified constant values
after the execution of the Operation, referring to
telemetry messages.

[Note] For some Operations of a Functional Object,
Current States of its State Machines (see Section 3.6.2)
also change as a result of their execution. The Current

States of a Functional Object are indicated by the values
of the State Attributes of the Functional Object (see
Section 3.6.2).

3.4.3.

An Operation which accompanies no changes is
referred to as No Operation (NOP).

No Operation (NOP)

Each Functional Object should have a NOP to check
the health of the communication channel.

24

JERG-2-700-TP001-NOTICE1

B Operation DEITED Attributes DEALDIRA|
%#. % ® Operation M Attribute Change Rule &9
%,

Functional Objects [&. ERETLDFFIDT=H P
BICRAIRERIZBE ZBRULNT. $ % Operation MEST
EREL T, —DLLED Attributes DEMNZEILT S
EOICEEAINETHD, TDXIICEREFT SN
BE. 5 Operation NIEEICEITINHEDL
(. £® Operation DETDHEREDLZIETTD
Attributes {EAY, EBEICEDL =N ESHEHERT
HETHRIITZ %,

Operation IZ¥ LT, £ ® Operation DEITEIZME
MNFBIFREGERIB L 5 Attributes Z+ A{ELL
LEDHBHZE, FD Attributes DR RITH L T,
Operation DEITEDEREZEDHDI L, HD
Operation ZFEUH 9§ telecommand message 1% 5
BRERIL. £0 Operation DEFTHE. telemetry
messages S L., Attributes DIEMNEE S NI=FE
BETHIEEHERIRETHD,

[;¥] 4 % Functional Object M—FERD Operations T
. TOERTOHFERE LTED State Machines D
Current States (3.6.2 IS HR) 3 ZEhHhd, HD
Functional Object @ Current States [&, Z @ Functional

Object @ State Attributes DETREN D (3.6.2 H
28],

Zib Z#FH7E LY Operation Z No Operation (NOP)
EMIT B,

BEBOBEMOEZED=6. & Functional
Object I NOP &2~ ETH S,

JERG-2-700-TP001-NOTICE1

3.4.4. Value Setting Attributes and Parameters of Operations
3.4.4.1. General / —H%

For an Operation of a Functional Object, zero or more
Attributes and zero or more parameters referred to as
Value Setting Attributes or Parameters, respectively,

shall be specified. A telecommand message to invoke
the Operation shall contain the values to be set to the
Value Setting Attributes specified for the Operation and
the values of the Parameters specified for the Operation.
The values of the Parameters shall describe detailed
information on how the Operation is executed. The
Functional Object shall set the received values to the
Value Setting Attributes when the Operation is invoked.
The entity which sends a telecommand message to
invoke the Operation should verify that the values of
the Value Setting Attributes are the sent values after the
execution of the Operation, referring to telemetry
messages.

3.4.4.2. Valid Ranges

A pair of upper and lower limits, referred to as a Valid
Range, may be specified for a Parameter. If a Valid
Range is specified for a Parameter, Controllers should
only send a telecommand message which contains a
value of the Parameter within the Valid Range.
Similarly, if a Valid Range is specified for an Value
Setting Attribute (see Section 3.3.7.2), Controllers
should only send a telecommand message which
contains a value of the Value Setting Attribute within
the Valid Range.

25

Functional Object @ Operation 12, € O@EL LD
Value Setting Attributes & #3" % Attributes RUE 0
ELLED Parameters EMRT HNFTA—EZEHD
Z &, 5 Operation ZMUHE T telecommand
message [, £ @ Operation [ZTE Tz Value Setting
Attributes IZFXE 9 S 1B, M KIZ. £ D Operation [
EOHT= Parameters DEZELE, Chbd
Parameters MD{EIX. @ Operation ZAAIZEITS
SO DEFMIERZERT &, £l £ D Functional
Object [, Z M Operation MIEUH S =& EFI,

Z 45 M Value Setting Attributes [ITER > = {E%
BRET D E, FD Operation FMFEUHT
telecommand message ZXSERERIE. TD
Operation DETHE. telemetry messages ZSEL.

Value Setting Attributes DEMNEST-ETHEIEZE
BRI RETHD,

Parameter [Z1& Valid Range &F7 9 S BIND—HHD E
FRfE & TRIEZEDH TR, % 5 Parameter [Z Valid
Range ZE M =155 . Controllers (&, & @D Parameter
MY Valid Range HDEZE &L telecommand message
DHEEZEDNETHS, BHKRIZ. 5 Value Setting
Attribute IZ Valid Range ZEHT=15E (3.3.72 1S
H&). Controllers [&. £ ® Value Setting Attribute 0
Valid Range RDEZE L telecommand message D
HEEDNETHS,

3.4.5.

JERG-2-700-TP001-NOTICE1

Effective-Conditions of Operations (Valid/Invalid and Effective-Condition Expressions)

Operations DFDHFEH (BR/ENRVEDFHEX)

An Operation shall be either valid or invalid at a given
time. When an Operation is valid, the Operation shall
be executed. When an Operation is invalid, Controllers
(including onboard Controllers, desirably) should not
send a telecommand message to execute the Operation.
Controllers on the ground shall have a function to warn
of sending of a telecommand message to execute an
Operation when the Operation is invalid. If the
Functional Object which has an Operation has received
a telecommand message to execute the Operation, the
Functional Object shall ignore the telecommand

message.

The condition which determines whether an Operation
is valid or invalid at a given time is referred to as an
Effective-Condition of the Operation.

An Effective-Condition shall consist of a Condition
Expression and a condition of Effective States (see
Section 3.6.6). The Condition Expression is referred to
as the Effective-Condition Expression.

For each Operation, an Effective-Condition Expression
shall be specified.

An Operation of a Functional Object at a given time
shall be valid when the Functional Object is valid, when
the evaluation result of the Effective-Condition
Expression of the Operation is true, and when all the
State Machines which have Effective States for the
Operation are in one of the States classified as the
Effective States for the Operation, or else it shall be
invalid.

26

Operation (&, HDFRICEINENDMNNTH
b5 &, 5 Operation BENTHBIHZE. TN
Operation [FETEINDZ &, 5 Operation HVEE
THAHIHEE. Controllers (TCENIEFHEEEBHD
Controllers £ &8 T) [XZF D Operation ZE1T9T 5
=8 D telecommand message ZiE HXE TIXELY,
#h E® Controllers (. # % Operation BNENTH S
\BAE. €O Operation ZXITT 5=-HD
telecommand message MEFEICH LT, BEEZT S
HeEx+ D &, H5 Operation ZF$FD Functional
Object [&. @ Operation #EITT 5HD
teleccommand message * ZELHBE. T D
telecommand message ZEIRT S &,

HBHEERIZ Operation NEMNESINERDHDE
H%. Z® Operation DEMEHEHRT S,

Bih& &, Effective States (3.6.6 IBSER) OEH
EEBRAMNDRBIE, COEHRTEDEHER
EFRT B,

% Operation IZ, BNEHHXZEDHDI &,

& % Functional Object M 3 S Operation X, & 5 EF
BT, %O Functional Object BEZTHY . MO,
Z® Operation DEHDFEHXZFTFEL-HERELE
THY. ™MD, £D Operation IZx9 B Effective
States Z D £ T D State Machines A% 0 Operation
@ Effective States [Z5388 &N 5 State DRINMIZH
A, BNTHDIZ L, SHLETNIFEYT
HdT &,

3.4.6.

For an Operation, its Criticality Level shall be
specified. A Criticality Level shall be either prohibited,
warning, or normal.

Criticality Level

If the Criticality Level of an Operation is prohibited, the
Operation shall not be executed. Controllers on the
ground shall have a function to prevent sending
telecommand messages to execute Operations whose
Criticality Levels are prohibited. Controllers aboard a
spacecraft should have a function to prevent sending
telecommand messages to execute Operations whose
Criticality Levels are prohibited, desirably.

If the Criticality Level of an Operation is warning,
caution shall be need for execution of the Operation.
Controllers on the ground shall have a function to call
for attention when sending telecommand messages to
execute Operations whose Criticality Levels are

warning.

27

JERG-2-700-TP001-NOTICE1

Operation 12, Criticality Level Z#E ® 5 Z &,
Criticality Level I&. prohibited, warning, & 7= [&
normal DAINMMTHEZ &,

% Operation O Criticality Level AY prohibited T &
BI5E . £ Operation [FETINBEWNI &, L
@ Controllers [&. Criticality Levels A° prohibited T
% % Operation ZEITT 51=HD telecommand
messages MDIXEZEF CHREZR D &, FTEHER
D Controllers [, TEMNIL, Criticality Levels A
prohibited T & % Operation XTI 5=-HD
telecommand messages MDEEZEFF CHREZIFOAR
ETHb,

& % Operation @ Criticality Level A% warning T#H
B\mE. T O Operation ZERITICIFFEEZT 5 &,
#h £ Controllers [&. Criticality Levels A% warning
T&H5 Operation EITTSH=HD telecommand
messages DEFEDOREITTEZHRET SHEEE D
&

3.5. EVENT CLASSES
3.5.1. Event and Event classes
3.5.1.1. General / —#&

A classification of an event (an occurrence of a thing
that has a particular significance) that occurs in a
Functional Object is referred to as an Event class of the
Functional Object.

A Functional Object shall have zero or more Event
classes.

An event shall belong to one Event class.

Eevents of some Event classes are detected by a
Functional Object (see Section 3.5.2.1).

Event classes are used to specify Trigger classes of
State Transition classes (see Section 3.6.6) and/or the

Trigger classes of Alert classes (see Section 3.5.2.1).

3.5.1.2. Trigger Conditions
For occurrence of an event of an Event class, an explicit
condition referred to as a Trigger Condition may be
specified.
- If a Trigger Condition is specified for an event of an

Event class, it shall be specified by a Condition
Expression. An event of the Event class shall be
triggered when the evaluation result of its Condition
Expression becomes true.

- If an explicit condition is not specified for trigger of
an event of an Event class, an event of the Event class
is triggered by some unidentified internal activity of the
Functional Object.

28

JERG-2-700-TP001-NOTICE1

& % Functional Object THET S cvent BEFEDE
KZHEITHAHXEORE) OREZE. £O
Functional Object @ Event class &E#9 %,

Functional Object (&, € B{ELLL®D Event classes %
ol &,

o5 event [k, —D®D Eventclass ICET A &

—EB Event classes M events (&, Functional Object T
BRET 53521 B88),

Event classes . State Transition classes @ Trigger
classes (3.6.6 TS HR), Alert classes O Trigger classes
(3.52.1 HSR) O—AFLIEINADIEFEIZAHL
B

% Event class D event M FEH |, Trigger Condition
LT OBAMLBEGEEZEOTRLY,

- 3% Event class @ event IZ Trigger Condition %
EDHHEEIE. FHATHEET S L, TD Event
class @ event (. ZTDEHXZFHHE L -HERNE
IZofz&ZFIC) HEIhB I &,

- &% Event class @ event M b 1) HIZBAREL &4
ZEHWGEIX, £®D Event class @ event &,
Functional Object INERDEI 5 MDEKREDEFEIZ &
2T, MUAETHK D,

3.5.2. Alerts and Alert classes

3.5.2.1. General // —fi%
Functional Objects can report to other entities an event
of an Event class that is important to them. The report
is referred to as an alert and its classification is referred
to as an Alert class.

If a Functional Object has a function to notify an event
as an alert, an Event class to which the notified event
belongs and an Alert class to which the corresponding
alert belongs shall be specified.

A Functional Object shall have zero or more Alert
classes.

An alert shall belong to an Alert class.

An alert of a Functional Object is transferred to other
entities with a telemetry message.

[Note 1] A telemetry message which transfers an alert
is called a NOTIFICATION Telemetry in [R3].

[Note 2] In some cases, an entity can detect an event of
an Event class by monitoring the values of some
relevant Attributes periodically. However, an event is
not necessary detected by the entity because the values
of the Attributes are not always delivered to the entity
in a sufficiently frequent manner. By contrast, the alert
reports an event actively and more promptly.

3.5.2.2. Triger classes of Alerts classes
The classification of the events which are the triggers
of the reports of the alerts of an Alerts class is referred
to as the Triger class of the Alerts class. One Event class
shall be specified as the Triger class for an Alert class.

The Functional Object shall detect an event of the
Trigger class and report to other entities with an alert of
the Alert class. The Functional Object which detects
events of a Trigger class may or may not be the
Functional Object for which the Trigger class is
specified.

29

JERG-2-700-TP001-NOTICE1

Functional Objects (&, HIDBRBERIZE Y EEL
Eventclass M event ZZNLIZEIMTE S, CDE
% alert EFRL . FTDHREEZE Alertclass &3 5,

% Functional Object IZ event % alert & L T1@
THMREZF-E5HEE. BHNT S cvent BNET
% Event class EXtng 5 alert BNET % Alert class
EEHD &,

Functional Object [&, £ A{ELLE® Alert classes &
HoCZ &,

H5alert I, —DD Alertclass IZBT A Z &,

% Functional Object @ alert [&. telemetry message
THOBRERICEESND,

[E 1] Alert #4512 5 telemetry message Z. [R3]
Tl&. NOTIFICATION Telemetry & FEAR,

X 2] HBE2BRERIE. $Oor0BET S
Attributes fBEZ EEAICERTH5ETHSH Event
class @ event ZRHTESHEELH D, LHL.
N 5®M Attributes DIEIL, TDEBREZRIZHT L
L+ 0EEICREIALGL N, BT LILZDE
HRERIE event ZRETZL LIRS GL, R
BIIZ, alert [X event ZREENAIM D &K W HRIZTEAN
ERCR

HB Alerts class O alerts DBED L) HEL B
events D7 E% . Z D Alerts class @ Triger class &
M9 b, H5 Alert class [ITxF LT, Triger class &
LT—2® Eventclass ZEHD &,

% @ Functional Object &, £ M Trigger class M event
FRHE L. ZD Alert class @ alert [T T, H1DERK
BERICEMT S &, $HD Triggerclasses D events
%19 5 Functional Object &, & M Trigger classes
% TEHT= Functional Object THOTHLERULVL., &
CTHRLULY,

3.5.23.
For an Alert class of a Functional Object, zero or more
Attributes and zero or more parameters referred to as
Value Attributes
respectively, shall be specified. An alert classified as an

Notifying and Parameters,

Alert class shall contain the values of the Value
Notifying Attributes and Parameters specified for the
Alert class. These values of the Value Notifying
Attributes shall be the values at the timing of the event
and the values of Parameters shall describe the detail of
the event.

30

JERG-2-700-TP001-NOTICE1

Parameters and Value Notifying Attributes of Alerts classes

Functional Object @ Alert class [Z, € O{EL®D
Value Notifying Attributes & ¥5 9 % Attributes R U
A{ELL LD Parameters EFRT H/INTA—F ZED
52 &, BB Alertclass [ZREEEIND alert [, %
D Alert class [IZFE 8Tz Value Notifying Attributes &
U Parameters DEZEL &L, SN BD Value
Notifying Attributes D{EIE event DFFR THDIETH
Y. Fi=. Parameters D{EIX. event DFFMZE T
&,

JERG-2-700-TP001-NOTICE1

3.6. STATE MACHINES

3.6.1. General/ —§&

A Functional Object shall include zero or more_State
Machines.

3.6.2.

A state which a State Machine has is referred to as a

States, Names of States, and Current State

State. A State Machine shall have two or more States.
A State shall have one Name (name).

The State which a State Machine currently takes is
referred to as a Current State.

3.6.3. State Attributes

A Functional Object shall have one Enumerative
Attribute corresponding to each of its State Machines,
referred to as a State Attribute.

In Figure 3-3, the concepts associated with State
Attributes and State Machines are summarized. The
concepts associated with State Attributes have 1-to-1
relation with the concepts associated with State
Machines. The concepts of State Attributes and the
concepts of State Machines represent the same thing
from different point of views.

The value which the State Attribute of a State Machine
takes shall indicate the State of the State Machine.

The Enumerative Name of a value of the State Attribute
corresponding to a State Machine shall be the Name of
a State which corresponds to the value.

[Note 1] The Current States of the State Machines of a
Functional Object determine a set of the Operations that
can be invoked at the time (see Section 3.6.6.4).

[Note 2] A Criticality Level is specified for a value of a
State Attribute (see Section 3.3.6.3).

31

Functional Object (&, £ B{ELL_E® State Machines
L&,

State Machine D DIREE A State &E#F B, State
Machine &, ZDLLE® States DI &,

State [, —20 Name (BRI FHEDI &,

& % State Machine A IRFEER B State Z Current State
EFRT B,

Functional Object [&. % @ State Machines D ENE
M2, State Attribute & Fi9 % Enumerative Attribute
E—DOEDOCI L,

Figure 3-3 [Z State Attributes & State Machines (2B
T AT EELNT 5, State Attributes [ZBHF D
(. State Machines [CEAY H & & —xt— D BRI
& % . State Attributes [ZB89 S 8E& & State Machines
AT HSBRBERLLDZEGLIE RN OREL
+DTH 5,

3% State Machine 12X % State Attribute AAER S
{ElX. Z® State Machine @ State ZRd = &,

% State Machine IZX¥ &9 % State Attribute DB
@ Enumerative Name [&, ZDIEIZFIET 5 State
M Name THDHZ &,

[;¥ 1] #® Functional Object M State Machines M
Current States [, ZDRRATHEUHIENTES
Operations DEEZRDH S (3.6.64BSE),

[E 2] State Attribute DEIZIE Criticality Level Z 7€
H3 (33.62EEBR),

JERG-2-700-TP001-NOTICE1

Concept
- Composition

A4——B Composition (A has B)

A4——B Generalization (B is A)

A

B 1-to-n Relation

A, B: Concept, 1, n: multiplicity

o 3.3. Att:ibute M

y

| 33.4. Scalar Attribute |
A

3.2. Functional Object+— | 3.3.5. Enumerative Attribute %ﬂ i Enfﬁ%i'n%;eur?;umi

r 3

| 3.6.3. State Attribute |
1

1

01 3.3.3 Initial Value

1

1

1
3.6.2. State

—{ 3.6. State Machine #
n

n - Name

3

1
01 3.6.5 Initial State

Figure 3-3 The Concepts Associated with State Attributes and State Machines
State Attributes & State Machines (2B 9 58t &

The concepts associated with State Attributes and State
Machines are extracted from Figure 3-1 and the
relations between the concepts associated with State
Attributes and those associated with State Machines are
added. In this figure, compositions and 1-to-1 relations
are shown in the vertical direction and generalizations
are shown in the horizontal direction.

32

Figure 3-1 M b State Attributes & State Machines [Z
B9 Sl E Z i L. State Attributes [ZBA 9 S
& State Machines IZEA 9 22 OB K ZEEML =,
AT, avRovave 1 d 1 OBEEZER
AEISTRL, RIEZEKFEARIZTT,

Valid/Invalid // H%h/EZ3

A State Machine shall be either valid or invalid at a

3.6.4.

given time. Whether a State Machine is valid or not
shall be identical with that of the State Attribute (see
Section 3.6.2) corresponding to the State Machine,
which means some State Machines of a Functional
Object are valid whenever the Functional Object is
valid.

3.6.5.

If a State Machine is always in a specific State when the

Initial State

State Machine becomes valid, the State is referred to as
the Initial State. Depending on whether the State
Attribute for a State Machine has an Initial Value or not,
the State Machine has or does not have an Initial State,
respectively. If a State Machine does not have an Initial
State, in which State the State Machine is when the
State Machine becomes valid is not predictable.

33

JERG-2-700-TP001-NOTICE1

State Machine (&, 3 % B mRIZHAEZ DA
THHZ &, $5 State Machine NEMEM I,
% M State Machines IZx$fi 9 % State Attribute (3.6.2
EHSR) NEINENER—THI L, COF
. @5 Functional Object M—HFBAD State Machines
I£. £ ® Functional Object MEFIHZEEILEICH
NTHEIEZTEKRT B,

5 State Machine MEZGE =& EIT, FD
State Machine DV&EIZHFED State ITHE DGR . T D
State % Initial State E#9 %5, S State Machine
IZ%FS9 % State Attribute A Initial Value Z& 3 DA
EDIE L. FNF N, FD State Machine (&, Initial
State ZFDIME4G L, $5D State Machine IZ
Initial State ZFF=ELMEE . £ D State Machine A
B o1& FIZ, F® State Machine @ State
DANIZIELSZMEFRFRAETH D,

JERG-2-700-TP001-NOTICE1

3.6.6. Transitions and State Transition classes / BB U State Transition classes
3.6.6.1. General / —fi§

A pattern of transition of the State of a State Machine
from one State to another State is referred to as a State

Transition class.

A State Machine shall have one or more State

Transition classes.

Transition from one State to another State shall belong
to a State Transition class.

A State Transition class shall have a Begin State (source
State in a transition) and an End State (target State in a
transition).

A transition of a State Transition class occurs when it is
triggered by 1) execution of an Operation, 2) an event,
or 3) some internal activity of the Functional Object.

When a transition of a State Transition class of a State
Machine occurs, the value of the State Attribute of the
State Machine changes.

3.6.6.2. Trigger classes of State Transition classes

A State Transition class shall have one or more Trigger
classes. A Trigger class shall be an Operation, an Event
class, or Spontaneous.

- Ifa State Transition class has an Operation as a Trigger
class, a transition of the State Transition class shall
occur as a result of execution of the Operation.

- If a State Transition class has an Event class as a
Trigger class, a transition of the State Transition class
shall occur as a result of an event of the Event class.

- If a State Transition class has a Trigger class which is
Spontaneous, a transition of the State Transition class
occurs by some unidentified internal activity of the
Functional Object.

A State of a State Machine shall be the Initial State or
reachable from at least one of the other States in the
State Machine. Hence, all the States are connected by
one or more State Transition classes in a State Machine.

34

State Machine @ State A%, & % State Hh S D State
2B 9 5/32 — > % State Transition class & #39”
S

State Machine [&. —DEL_E ® State Transition classes
Ol L,

H B State MO State [TEFRBIX., —DD State
Transition class (@9 B &,

State Transition class [&, Begin State (BT State)
& End State (BFEIED State) ZEIFD &,

State Transition class MEFIL. 1) Operation DZEAT.
2) event, F1zl& 3) I 5D Functional Object A
HOES. [CEK>THRIAEINERICEKET S,

¥ % State Machine T. # 4 State Transition class @
ERNFEET HE. FOD State Machine @ State
Attribute DENEILT B,

State Transition class [&, —DLLE®D Trigger classes
#¥ D C &, Trigger class [X. Operation, Event class.
FE =& Spontaneous THBD Z &,

- % State Transition class A%, % Operation &
Trigger class & L THEDIFE. £ D Operation DE
TR E LT, #F0 State Transition class DBFE
NEETEHZ L,

- & % State Transition class A%, &% Event class %
Trigger class & L THDIHE. €D Event class M
event DFEER & L T, £ D State Transition class DE
BOARETEH L,

- $ % State Transition class A%, Spontancous T#H 5
Trigger class Z¥ D15 & . Functional Object RERD
A S MDERIDFENIZ & > T, £ State Transition
class DEBBLNRELET D,

State Machine @ State [&. Initial State T HME D
State Machine BN V7% < & FH—D O States M5
BRBAUEETHS Z &, LT=HA > T, State Machine T
. 2 T®H States N—DLLE® State Transition
classes THEEiSN T S,

3.6.6.3.

JERG-2-700-TP001-NOTICE1

Maximum Allowable Transition Time and Minimum Allowable Transition Time

For each State Transition class in a State Machine of a
Functional Object, the Maximum Allowable Transition

Time (the maximum time that a transition is allowed to
take) may be specified. If a transition of a State
Transition class invoked by an Operation is not
completed within its Maximum Allowable Transition
Time, the Functional Object shall be diagnosed by other
entities as not functioning correctly.

Similarly, the Minimum Allowable Transition Time (the

minimum time that a transition is allowed to take) may
be specified for each type of State Transition class. If a
transition of a State Transition class invoked by an
Operation is completed in less than its Minimum
Allowable Transition Time, the Functional Object shall
be diagnosed by other entities as not functioning
correctly.

3.6.6.4. Effective States for Operations

When a State Machine has State Transition classes
which have an Operation as a Trigger classes, States
referred to as Effective States for the Operation exist for
the State Machine. Here, Effective States of a State
Machine for an Operation are the States which are the
Begin States of the State Transition classes that have the
Operation as a Trigger class.

35

% Functional Object @) State Machine M%& State
Transition class [Z 2D LY T, Maximum Allowable
Transition Time (BRBIZHFRINSERAKME) %
EDTRL, $ 5 Operation IZ&k > THUHE STz
State Transition class @ & # A € M Maximum
Allowable Transition Time RIZ5ET L7ELMES.

@ Functional Object (&, MDEBHERIZL > TIE
BITHELTULWRWEZHINDZ &,

F#&kIZ. Minimum Allowable Transition Time (EF%
[CHFB SN DH&/NEME) %% State Transition class
IZX L TESH TR, 5 Operation [Z& > THY
H & f f= State Transition class D BN ZF D
Minimum Allowable Transition Time K& T T L 1=
5E . €@ Functional Object (X, BDERERIC &
STEFEICHEEL T EWEEHINSZ &,

$ % State Machine A, &% Operation % Trigger
classes & L T#ED State Transition classes D15
& . O State Machine [Z%f L T, £ ® Operation 1Z
19 % Effective States &¥f9™ % States NFET o
_ Z T, State Machine M % Operation 12X %
Effective States & [&. € @ Operation Z Trigger class
& L THD State Transition classes @ Begin States T
HDStates D ETH D,

3.7. DIAGNOSTIC RULES

A rule with which other entities diagnose whether a
Functional Object is functioning correctly or not is
referred to as a Diagnostic Rule. Whether a Functional
Object is functioning correctly or not can be diagnosed
by another entity, using a set of the Diagnostic Rules
specified for the Functional Object. A Functional
Object shall have zero or more Diagnostic Rules.

A Diagnostic Rule may be specified as a Condition
Expression. If the evaluation result of a Condition
Expression which includes Attributes of a Functional
Object is true, the Functional Object shall be diagnosed
to be functioning normally, or else diagnosed to be
functioning abnormally.

For each Diagnostic Rule, a text message containing
additional information on the diagnosis (for example,
(1) the level of abnormality and/or (2) methods to
handle the abnormality) shall be specified.

The simplest Diagnostic Rule takes the form that
specifies a pair of the boundary values for the allowed
range for a Numerical Value Attribute of a Functional
Object, with which other entities check whether the
value of the Numerical Value Attribute is in or out of
the allowed range (see Section 3.3.7).

[Note] When a Functional Object detects an anomaly in
itself, it can report the anomaly to other entities by
issuing an alert (see Section 3.5). If it is not easy for a
Functional Object to detect an anomaly in itself, other
entities diagnose the Functional Object, using the
Diagnostic Rules specified for the Functional Object.

36

JERG-2-700-TP001-NOTICE1

Functional Object Y, IEEIZEIMEL TLWSMNELZE
HOBREZENCZH T H5-HORE %,
Diagnostic Rule 	 %, # % Functional Object [
5t L TEOHT=—3ED Diagnostic Rules ZALY, TD
Functional Object MIEFICHEBEL TLWSIHNELZF
MOBRERICE>TEZEHTE S, Functional
Object I&, ¥ BELLE®D Diagnostic Rules Z¥FD <
&Eo

Diagnostic Rule [&, £ & LTEDTREL,, H5
Functional Object @ Attribute % &35 4= % 514
LE=#HRLETHNIEL. FOD Functional Object [&
EREICHELTWSEZMEN S, £5THWME
&, BEICHEELTWS LEHShE &,

%& Diagnostic Rule [CDWT, ZERICEAT 5EBM1E
wBRE (1) BEBEOLALYL, Q) BEEZNE
THAHE) ZECXFREREEDDS &,

b BEHA Diagnostic Rule [, # % Functional
Object M #H % Numerical Value Attribute [Zxf L TEF
REFEDREREDHEEDSILDTHDH, %k
AU, thOBEREFRHA. £ D Numerical Value
Attribute DENHFBHEICEENINENEF T
V995 (337EHSHR),

[}¥] # 5 Functional Object NELNDEFEZFHEH L
1BE. alert ZRITIAETETDEEZ DB
BRICEMT HENTED 35 HSHR)., 5
Functional Object NEH TREZRET HENE
B TIGEVEE ., OBBERI. £D Functional
Object IZFE & 1= Diagnostic Rules ZFH Ly, £D
Functional Object Z MY %,

3.8. OTHER FEATURES / Z0Qith

A Functional Object may generate data that are not
specified as Attributes in the Functional Object
definition as a result of executing its functions. For
example, data representing results of observations or
experiments (e.g., images) may be generated by
Functional Objects. Functional Objects may also
reference the values of Attributes that other Functional
Objects have.

[Note] The Spacecraft Monitor and Control Protocol
(SMCP) [R3] does not specify any methods for sending
and receiving data that are not specified as Attributes.

37

JERG-2-700-TP001-NOTICE1

% Functional Object (&, ZTDHBEZERIT L =4
B & L T.ZdD Functional Object M FEF T Attributes
ELTEDTVWEWNWT—2ZERLTHLEL, fl
ZIE, BROEROER (ERE) 2RI T4
% .Functional Objects A4 RE L TH B LY, Functional
Objects (. fth @ Functional Objects NEH T B
Attributes lBZ SR LTH RLY,

[5%] Spacecraft Monitor and Control Protocol (SMCP)
[R3] [&. Attributes & LTEDTVEHEWLTF—E2D
EREFREROEL,

3.9. CONDITION EXPRESSION // &#=

To specify a condition of various kinds (see Section
3.1,
Expression is used. A Condition Expression takes a

an expression referred to as a Condition

boolean value of either true or false at a given time.

A Condition Expression consists of terms referred to as

JERG-2-700-TP001-NOTICE1

HFEOEYE G1ESBR) Z2EHLHOIC. A
EMTHRERAND, ZMHEE. HEIFKRT. E
FrFBORNADEREEIRD.

£ = [&. Logical Operators &9 BEEF &
Comparison Terms E#RFT BIEMN S A B, List3-1[Z

Comparison Terms and operators referred to as Logical

Operators.
Expression

The precise definition of Condition
in List 3-1. A Condition
Expression shall be one of a combination of “NOT” and

is shown

a Condition Expression, a combination of “AND” and
two or more Condition Expressions, a combination of
“OR” and two or more Condition Expressions, a
Comparison Term. Here, “NOT” is a unary Logical
Operator and “AND” and “OR” are multi-term Logical
Operators. A Comparison Term shall be a combination
of an Attribute, an operator referred to as a Comparison
Operator, and a constant, where a Comparison Operator

LR N3

shall be one of “equal to”,

ELINT3

not equal to”, “greater

smaller than”, and

EE T3

than”, “greater than or equal to”,
“smaller than or equal to”.

|Conditi0n Expression| =

IComparison Term| | INOT] [Condition Expression| |

FHADEELGEEETY, £HAF, “NOT” &
EHADEAEDLE “AND” £ ZDUEDEHFR
DA EDLE. “OR” EZD2ULEDEHERXDHEH
EhHE. F=IE Comparison Term DENMNTH B
Z &, T TL“NOT” IEBIED Logical Operator T
HY. “AND” & “OR” [FZIE® Logical
Operators T# %, Ff=. Comparison Term [&.
Attribute, Comparison Operator & ¥ B;BEF, &
VEHDMAEDLDETHS L, 22T
Comparison Operator [F, TF L LM, TFL <AL,

FTEYREFWI, TEYXREFLMFLLL, TEYRD
SV RUTEYNSODOELL] ORINHDTH
52 &,

|AND| |C0ndition Expressionl |C0nditi0n Expression| + | @ |C0ndition Expressionl |C0ndition Expression| +

|Comparison Term| n=

|Attribute] [Comparison Operator] |Constant

|Comparison Operatoﬂ =

|equal to| | |not equal to| | |greater than| | |greater than| | |equal to| | |smaller than| | |smaller than| | |equal to|

List 3-1 Extended BNF Definition of Condition Expression

JL3E BNF 2 & 5

The left side of :: = indicates the item to be defined, and
the right side indicates the content of the definition.

+ indicates the preceding term existing one or more
times.

| is used to separate alternative terms.

This notation is the extended BNF (i.e. BNF extended
with regular expression) but does not specify the
syntax.

38

FADER

= DEBRERSNSEE. ALRIERRNRE
GRS
+ [FHTEN—DLULBEHTEFERT,

| [XATE - RENERERTHIFEETY

CDRLEITHEIR BNF (DF Y, ERKRIBTHIE
ENf=BNF) THHAN. BXIEDHLLY,

4. FUNCTIONAL CLASS

4.1. GENERAL/ —f&

If identical or similar Functional Objects are used in one
or multiple spacecrafts and their onboard instruments,
the common features of these Functional Objects can be
specified as a template, which is referred to as a
Functional Class. Conversely, a Functional Object can
be specified with a Functional Class as a template.

A Functional Class specifies design parameters and
Attributes, Operations, Event classes, Alert classes,
State Machines, and Diagnostic Rules that are used
commonly by multiple Functional Objects.

A Functional Object shall be specified by using zero or
more Functional Classes as the templates and with or
without additional functions (such as Attributes and/or
Operations).

FO: Functional Object, FC: Functional Class

OO

(1) Acceptable FCs

parent
FC name

/a

(3) Acceptable FOs

parent
FO name

JERG-2-700-TP001-NOTICE1

Rl — E£ = IEFELLD Functional Objects Z—DFE =&
BHOFHEOZOBEMEBTHLSEE. Ch
5 M Functional Objects D BDFFE % . Functional
Class EFFT HDUVLEELTEHLIENTES .
IZE 5 & . Functional Object [&. Functional Class %

VGBELTEDDENTED,

Functional Class [&, B&&H/35A—%, #UIZ, &
#®D Functional Objects THMBIZFHLYS Attributes,
Operations, Event classes. Alert classes . State

Machines & U Diagnostic Rules #E&H %,

Functional Object I&. € A{E L £ ® Functional
Classes ZOGRZAL, TOFEN, AIHDHEEE

(Attributes 42 Operations &) #EBML TEH D
&

(2) Acceptable FCs

/d

(4) Acceptable FOs

Je

Figure 4-1 Acceptable Combination of Parent-Child Relation between Functional Classes/Functional

Objects / Functional Classes/Functional Objects D FERTHBE S S#HAEHE

39

4.2.

A Functional Class shall contain zero or more

Functional Classes.

[Example 1]

Figure 4-1 (1): Functional Class A contains Functional
Class B and Functional Class C.

Figure 4-1 (3): “Functional Object /a specified with
Functional Class A as the template” has “Functional
Object /a.b specified with Functional Class B as the
template” and “Functional Object /a.c specified with
Functional Class C as the template”.

A Functional Class may be contained in two or more

Functional Classes.

[Note] A Functional Object is not contained in two or
more Functional Objects (see Section 3.2.1).

[Example 2]

Figure 4-1 (2): Functional Class D and Functional Class
E both contain Functional Class F.

Figure 4-1 (4): “Functional Object /d specified with
Functional Class D as the template” has “Functional
Object /d.f specified with Functional Class F as the
template”. “Functional Object /e specified with
Functional Class E as the template” has “Functional
Object /e.f specified with Functional Class F as the
template”. Whereas both Functional Object /d.f and
Functional Object /e.f are specified with Functional
Class F as the template, Functional Object /d.f and

Functional Object /e.f are different Functional Objects.

4.3.

This document specifies the following standard
Functional Class:

1) Memory Functional Class (see Chapter 5).

40

JERG-2-700-TP001-NOTICE1

PARENT-CHILD RELATION / S¥Ei %

Functional Class [&. Functional Classes Z+ O {&LL
FELE,

(1 1]

Figure 4-1 (1): Functional Class A [&. Functional Class

B & Functional Class C & &,

Figure 4-1 (4): TFunctional ClassA Z VD 7EE E LT

%E 8 1= Functional Object/a] I&. Functional Class B

UV 7EE L L TESHT= Functional Object /abl &
I Functional Class C Z OB ELTENH I

Functional Object /a.c] Z##2D,

Functional Class [&. Z—DLL_E® Functional Classes
ZEFENTRLY,

[3¥] Functional Object (£, ZDLLE® Functional
Objects [CIFEFENGELY 3.2.1 HSE),

(51 2]

Figure 4-1 (2): Functional Class D & Functional Class
E [, ffv$. Functional Class F &1,

Figure 4-1 (4): TFunctional ClassD ZUVE E LT
%E & 7= Functional Object /d] I&. 'Functional Class F
VB L L TESDT= Functional Object /d.f] Z#$
D, [lFunctional Class E ZU0 BB ELTED =
Functional Object /e] I&, TFunctional Class F & U
B & L TEDT= Functional Object /ef] Z¥D,
Functional Object/d.f & Functional Object /e.f [Efal 4L
% Functional Class F 2O 7GR ELTEDIZELDT
% B HY. Functional Object /d.f & Functional Object
/e f X% D Functional Objects T#H Do

STANDARD FUNCTIONAL CLASS // 1Z2#8973% FUNCTIONAL CLASS

AETITEEM A Functional Class &E LTULTD
DEED D,

1) Memory Functional Class (5 ESH)

S.

5.1. GENERAL/ —f&

A Memory Functional Object is a Functional Object

that represents a memory device (a device that stores
data). The Memory Functional Class is an abstraction

of the properties of all the Memory Functional Objects
and specifies the design parameters and Operations that
any Memory Functional Object shall or may have.

The Memory Functional Object has the design
parameters and Operations specified in this chapter. A
Memory Functional Object may have (1) other
Operations in addition to those specified below and (2)
some other characteristics of Functional Objects (such

as Attributes, Event classes and/or Alert classes).

41

JERG-2-700-TP001-NOTICE1

MEMORY FUNCTIONAL CLASS

Memory Functional Object [&, A B U TFNA R (T
— B HFBINT BT /34 R) #F T Functional Object
TdHd., Memory Functional Class &, £T®D
Memory Functional Objects D EFDME F#HMRIEL
3D THY . Memory Functional Object DA =78
ThIFEELELD, FEFE > TR/ A—
4 & Operations ZEH D,

Memory Functional Object [&. AREIZESH HF&RET/N
5 A—4 & Operations Z$ 2, Memory Functional
Object [, (1) LTFIZTESH % Operations [ZANZ D
Operations, (2) €M@ Functional Objects DYFMHE

(Attributes, Event classes 42 Alert classes &) % ¥
2 TRLY,

JERG-2-700-TP001-NOTICE1

5.2. DESIGN PARAMETERS // Sg&t/\S5 A —4

52.1. General// —&

A Memory Functional Object shall have the following

design parameters. The wvalues of these design

parameters shall be specified and fixed at the time of
the designing.

1) FirstAddress

2) LastAddress

3) MaximumUploadLength (optional)

4) AlignmentLength

5.2.2. FirstAddress and LastAddress

The FirstAddress and LastAddress shall specify,
respectively, the first and last addresses of the memory

area which can be accessed.

5.2.3. MaximumUploadLength

The shall the
maximum octet length (e.g. 256 octets) of the memory

MaximumUploadLength specify

data handled in one MemoryLoad Operation (see
Section 5.3).

5.2.4.
The AlignmentlLength shall specify the unit for

AlignmentLength

memory data access, which shall be one of the
following:

- 1 octet (i.e. any address),

- 2 octets,

- 4 octets, or

- MaximumUploadLength.

42

Memory Functional Object [&, AT DEEEH/NT A —
BEFDOIIE, INLDERENFTA—FDIER.
Memory Functional Object DERETFFICESD . BIE &
ndcé&,

1) FirstAddress

2) LastAddress

3) MaximumUploadLength (7 3)

4) AlignmentLength

FirstAddress & T LastAddress [£. #FhFh. T
TLRATEDATEHORIRUZFEDT7 FLR
EEDDH &,

MaximumUploadLength [£., —[E @ MemoryLoad
Operation (5.3 IHZER) MRS A EV T —2DORKX
octet & (BIZAIE 256 octets) ZEHB &,

AlignmentLength (£, * B T—4 D7V & AE
FEDHDE, Tf-, UTOEDRINNTHS

&Eo
- loctet (DEY., FEDT7 FLR),
— 2 octets,

- 4 octets, E£1=1L
— MaximumUploadLength

JERG-2-700-TP001-NOTICE1

5.3. OPERATIONS

53.1. General/ —}&

A Memory Functional Object may have the following
Operations. The Parameters for these Operations are
given in parentheses.

1) MemoryLoad (StartAddress, MemoryData)
(optional)

2) MemoryDump (NoOfDumps, StartAddress,
Length) (optional)

5.3.2.
The MemoryLoad is an Operation for uploading data to

MemoryLoad

the memory. If the MemorylLoad is invoked, the
Memory Functional Object shall write the value of the
MemoryData into the memory area starting from the
address specified by the StartAddress.

Note that the length of the MemoryData shall be equal
to or smaller than the MaximumUploadLength, and the
values

- the StartAddress and

- the octet lengths of the MemoryData

shall be multiples of the AlignmentLength.

[Note 1] The octet length of MemoryData is always the
MaximumUploadLength if the AlignmentLength is
equal to the MaximumUploadLength.

[Note 2] A telecommand message that invokes a

MemoryLoad is called a MEMORY LOAD

Telecommand in [R3].

43

Memory Functional Object [&. 2R® Operations # %
2TRLY, T M Operations @ Parameters (&,
() RIZREND,

1) MemoryLoad (StartAddress, MemoryData)
FFav)

2) MemoryDump (NoOfDumps, StartAddress,
Length) (A 72 3Y)

MemoryLoad [, *EVYIZT—2 %7y 7A—F
T 518D Operation T#H S, MemoryLoad HFELN
H & h % & . Memory Functional Object I& .
MemoryData MfE% . StartAddress DNEET 57 K
LAMBGIRES A B HERICEERAT &,

Z & T . MemoryData @ octet & IF
MaximumUploadLength & Y /NS WLIVMFELINZ &,
E=N

- StartAddress & U

- MemoryData @ octet £

DIEIX. AlignmentLength DIEMTH D &,

[#E 1] AlignmentLength A% MaximumUploadLength IZ
Z L WLWIE A . MemoryData @ octet & I&H I
MaximumUploadLength T#H %,

[3¥ 2] MemoryLoad % M Uf ! ¥ telecommand
message % . [R3] T I[& . MEMORY LOAD
Telecommand & FEAR,

5.3.3.
The MemoryDump is an Operation for dumping

MemoryDump

memory data. If the MemoryDump is invoked, the
Memory Functional Object shall dump the memory
data of the octet length specified by the Length, starting
at the address specified by the StartAddress, for the
number of times specified by the NoOfDumps.

[Note 1] A telecommand message that invokes a

MemoryDump is called a MEMORY DUMP

Telecommand in [R3].

[Note 2] A telemetry message which transfers memory
data is called a MEMORY DUMP Telemetry in [R3].

A Memory Functional Object should be able to dump
the entire memory area of the Memory Functional
Object with an invocation of the MemoryDump;
[Rationale] Because GSTOS has a function that collates
whether the contents of a memory are as expected
through the MEMORY DUMP Telemetries generated
by one MEMORY DUMP Telecommand and notifies
the operator of the collation result and this function
enables a simple spacecraft operation.

44

JERG-2-700-TP001-NOTICE1

MemoryDump [&. A B T—42 %427 GEHL)
T BT=8HD Operation T3H Ao MemoryDump ASFF
U &Eh B &, Memory Functional Object (&,
NoOfDumps THEE SN 7B, StartAddress THE
ESINT=T7 FLAHM G, Length THE SN Tz octet
ROAR)T—R#FTTH2 L,

[;£ 1] MemoryDump % MU 9 telecommand
% . [R3] T IX. MEMORY DUMP
Telecommand & FE5Y,

message

UE 2] *E®VT—2ZEET D telemetry message
#.[R3] Tl&. MEMORY DUMP Telemetry & FESS,

Memory Functional Object &, 1 [B]0) MemoryDump
DFEUH LT, Memory Functional Object D& A E
VB ES O TARETHEINETTH S ; [1B#L]
GSTOS [&. 1 20 MEMORY DUMP Telecommand
[Z& Y ER SNz MEMORY DUMP Telemetries %
BLTARUINHFEIN-ENMREL. TORE
BREZBEEICHOE SHEZHE >TSS, Z0D
WRRZAWVWD LEMOTFHEERNARETE S
o)

JERG-2-700-TP001-NOTICE1

Appendix A. Acronyms // B&EEEE

This chapter lists the acronyms used in this AKETIEH, REVLAVWIRE—EEZTT,
document.

GSTOS Generic Spacecraft Test and Operations Software

NOP No Operation

SIB Spacecraft Information Base

SMCP Spacecraft Monitor & Control Protocol

XOR Exclusive OR

45

Appendix B.

B.1.

An Example of a Functional Object

GENERAL // —§&

JERG-2-700-TP001-NOTICE1

In this Appendix, a Functional Object named X A is
presented as an example of a Functional Object. This
Functional Object models the basic functions to control
a simple instrument.

B.2. FUNCTIONAL OBJECT

A Functional Object named X SubSystem represents a
Sub-System X.

Functional Object X A 1is contained in the parent
Functional Object X SubSystem and specifies the
functions of the instrument X-a contained in Sub-
System X.

X A contains children Functional Objects named X Al
and X A2, each of which represents a set of functions
performed by the instrument X-a. X A specifies the
functions concerning the entire instrument.

X _Ais valid only when certain Attributes of the parent
Functional
condition. The children Functional Objects X Al and
X A2 are valid only when the value of the State
Attribute X_A_RunStop (see Section B.6) is RUN, i.e.,
X Aisin the State “RUN”.

Object X SubSystem meet a certain

X A has Attributes and Operations for monitoring and
controlling the instrument X-a as a whole. It has a State
Machines that represent the rules concerning its actions.
It also has an Event class, for which an Alert class is
defined.

46

Z Z TIl&. Functional Object MfHl& LT, X A &Ly
5 Functional Object ITDWTEHBHET 5, 2D
Functional Object (&, BE#l7GHIRDETZHIET 5
ERMLGHEZETILELEZEDTH S,

X SubSystem &@Ff STz Functional Object (&4
TORATLX EFRT,

Functional Object X A [&. ¥ Functional Object
X SubSystem [ZHEFENTEY . YT VRTLXRA
D X-a EVWDIHBDHEEZTED D,

X AlE. X Al & X A2 &anfa SN f=F Functional
Objects ZEH. TDENETNITHEE X-a TETS
NOBRDEEZRHT ., X A [, HIBFEEKICE
TEOWEETED D,

X_A I&. # Functional Object X SubSystem D4¥E
M Attributes DFEDEHZHI-T L EDHE
& 755, F Functional Objects X Al & X A2 [&,
State Attribute X A RunStop (B.6 IHSHE) D{EMN
RUN, DFVY., X A M State “RUN”IZHDEZD
HENTHD,

X A [, & Xa ERZERFNHTH5-00
Attributes & Operations ZF LT S, ChIEENE
FRANZ® S 9 B State Machines BT b, S bIZ,
— DM Eventclass #HFH., CNIITHLT—D0D
Alert class NEZ SN D,

B.3. ATTRIBUTES

X A has the following four Attributes:

1) X A OnOff,

2) X A RunStop,

3) X A ErrorStatus, and
4) X A CheckMode.

The wvalues of X A OnOff and X A RunStop
represent the States in which the Functional Object is at
a given time. Thus, they are State Attributes. The other
Attributes, X A_ErrorStatus and X A CheckMode,

are Numerical Value Attributes.

Of the four Attributes, only the value of
X A CheckMode can be set from the outside of the
Functional Object.

X A OnOff is valid whenever the Functional Object is
valid, whereas X A RunStop, X A ErrorStatus, and
X A CheckMode are valid only when the value of
X A OnOffis ON, i.e., the Functional Object is in the
State “ON” (see Section B.6).

47

JERG-2-700-TP001-NOTICE1

X AlX, ZOEDOD Attributes Z$FD,

1) X A OnOff

2) X_A_RunStop
3) X A ErrorStatus
4) X A CheckMode

X A OnOff & X A RunStop D fEIX. Z D
Functional Object M & HFFR D States TR T . LTz
M2 T, T 5IE State Attributes TH Do T DD
Attributes . 9 & 4 B X A ErrorStatus &
X_A_CheckMode (&, Numerical Value Attributes T
Hbd.

ZNB5MmEDOD Attributes DH T, X A CheckMode
D FHH Functional Object HNEBMSEZERETE D,

X_A OnOff &, Functional Object BE XA B (XE

IZEFHE M TH SH. — A . X A RunStop,

X_A ErrorStatus, & U X A CheckMode (&

X A OnOff MEA ON, DFVY., Z® Functional

Object A State “ON”, [CHDIZFEDHENTH D
(B.6 HEZH),

B.4. OPERATIONS

X _A has the following five Operations:

1) X A On,

2) X A Start,

3) X A Stop,

4) X A Off, and

5) X A SetCheckMode.

The Operation X A SetCheckMode holds a value
which is set to the Numerical Value Attribute
X A CheckMode.

These Operations can be executed when a set of the
following conditions are met. These Operations also
appear as the Trigger classes of the State Transition
classes of the State Machine (see Figure B-1).

1) X A On X A OnOff=OFF
2) X A Start
3) X A Stop
4) X A Off X A OnOff=ON

5) X _A_SetCheckMode X A _OnOff=ON

48

JERG-2-700-TP001-NOTICE1

X A lE. ROEDD Operations D,

1) X A On
2) X A Start
3) X _A Stop
4) X A Off
5) X A SetCheckMode

Operation X_A_SetCheckMode I&, Numerical Value
Attribute X A CheckMode [CEZERET HEER
¥ 5

IO Operations &, LLTFOEHMHE-SNT
EFICEFTTEDS, £z, TN BHD Operations I&.
State Machine @) State Transition classes @) Trigger
classes & LTH&EHI S (Figure B-1 S8),

X_A_OnOff=ON AND X_A_RunStop=STOP

X_A_OnOff=ON AND X A RunStop=RUN

B.S. EVENT CLASSES
X_ A has the following single Event class:
1) X A ErrorDetect.

An event of this Event class is triggered when the
following condition is met:

NOT (X_A_ErrorStatus=NORMAL)
X A can issue alerts of the following single Alert class:

1) X A ErrorDetected.

An alert of this Alert class is used to report to other
entities the occurrence of an event of the Event class
X_A_ErrorDetect and has the value of the Attribute
X A ErrorStatus as a Parameter.

49

JERG-2-700-TP001-NOTICE1

X AlX, UTO—20 Event class DHZEFD,
1) X A ErrorDetect.

Z M Event class M event [&. ROEHEMNFE-sh
=BEICk)HENhB,
NOT (X_A_ErrorStatus=NORMAL)

X AlE. ROD—D®M Alert class @ alerts ZFEITT
=5,

1) X A FErrorDetected.

Z M Alert class @ alert & . Event class
X_A_ErrorDetect @ event DFEAE T MDERERIC
BH T S5 HITHLWLB RN Attribute
X_A_ErrorStatus M{E% Parameter & L THD,

B.6. STATE MACHINES

The behavior of X A is specified with two State
Machines, X A OnOff and X A RunStop (see Figure
B-1).

State Machine X A OnOff

JERG-2-700-TP001-NOTICE1

XA DIRBFEWLIEZ., = DO State Machines
X A OnOff & X A RunStop TE®H S (Figure B-1
ZH),

X A On
OFF ON
X A Off
State Machine X_A_ RunStop
X A Start
STOP RUN

X A Stop, X A ErrorDetect

Figure B-1: State Machines of Functional Object X_A

The boxes show the States. The arrows show the directions of a transition of the State Transition classes. The
Trigger classes are shown above the arrows. / FAf[&, States Z/RY . KFIIE. State Transition classes DE
BARZETRYT, REIODLIZ Trigger classes ZRT o

The State Machine X_A_OnOff takes either of the two
States “OFF” and “ON”. The Initial State is OFF. The
Current State of this State Machine is indicated by the
State Attribute X A OnOff. This State Machine is
valid whenever the Functional Object is valid.

The State Machine X A RunStop takes either of the
two States “STOP” and “RUN”. The Initial State is
STOP. The Current State of this State Machine is
indicated by the State Attribute X A RunStop. This
State Machine is valid only when the value of
X A OnOffis ON (i.e., when the Functional Object is
in the State “ON”).

50

State Machine X_ A OnOff [, ZD® States “OFF”
& “ON” OWTHMEER B, Initial State [& OFF T
»HBD, D State Machine 0 Current State [, State
Attribute X A OnOff TiREN b, D State
Machine [&. Functional Object MENFIBEILEIZ
AUTHD,

State Machine X_A RunStop [ZIX. ZD® States
“STOP” & “RUN” H% B ,Initial State [& STOP T
»HD., D State Machine @ Current State [X, State
Attribute X A RunStop TREINLd, D State
Machine [&, X A OnOff DEA ON DBE (DO F
Y. Functional Object AY State ON DIHFE) [ZDH
AUNTHS,

JERG-2-700-TP001-NOTICE1

Appendix C. History of Terminology Changes
REBEOEEDERE

NOTICE-1:

Operation

* From: Attributes of Operations

* To: Value Setting Attributes of Operations
Alert class

* From Attributes of Alerts classes

* To: Value Notifying Attributes of Alerts classes

51

	1. Introduction // はじめに
	1.1. Purpose // 目的
	1.2. Scope // 範囲
	1.3. Applicability // 適用先
	1.4. References // 関連文書
	1.4.1. Normative References // 引用文書
	1.4.2. Informative References // 参考文書

	1.5. Document Structure // 本書の構成
	1.6. Definitions and Notations // 定義及び表記法
	1.6.1. Terms defined in this document // 本書で定義される用語
	1.6.2. Notations // 表記法

	1.7. Verbal forms // 表現形式

	2. Overview
	2.1. General // 一般
	2.2. Purpose of This Model // このモデルの目的
	2.3. Functional Object
	2.4. Spacecraft Information Base 2
	2.5. Communications Between Functional Objects and Other entities Functional Objectsと他の構成要素の間の通信

	3. Method of modeling with Functional Objects Functional Objectsによるモデル化の方法
	3.1. General // 一般
	3.2. Functional Objects
	3.2.1. General // 一般
	3.2.2. Parent-Child Relation // 親子関係
	3.2.3. Effective-Conditions of Functional Objects (Valid/Invalid and Effective-Condition Expressions) Functional Objectsの有効条件（有効/無効及び有効条件式）

	3.3. Attributes
	3.3.1. General // 一般
	3.3.2. Effective-Conditions of Attributes (Valid/Invalid and Effective-Condition Expressions) Attributesの有効条件（有効/無効及び有効条件式）
	3.3.3. Criticality Levels of values
	3.3.4. Initial Value
	3.3.5. Scalar Attributes and Complicated Attributes
	3.3.6. Enumerative Attribute
	3.3.6.1. General // 一般
	3.3.6.2. Values and Enumerative Names // 値及びEnumerative Names
	3.3.6.3. Criticality Level

	3.3.7. Numerical Value Attribute
	3.3.7.1. General // 一般
	3.3.7.2. Valid Ranges
	3.3.7.3. Action Limits, Caution Limits, and Criticality Level

	3.4. Operations
	3.4.1. General // 一般
	3.4.2. Attribute Change Rules
	3.4.3. No Operation (NOP)
	3.4.4. Value Setting Attributes and Parameters of Operations
	3.4.4.1. General // 一般
	3.4.4.2. Valid Ranges

	3.4.5. Effective-Conditions of Operations (Valid/Invalid and Effective-Condition Expressions) Operationsの有効条件（有効/無効及び有効条件式）
	3.4.6. Criticality Level

	3.5. Event classes
	3.5.1. Event and Event classes
	3.5.1.1. General // 一般
	3.5.1.2. Trigger Conditions

	3.5.2. Alerts and Alert classes
	3.5.2.1. General // 一般
	3.5.2.2. Triger classes of Alerts classes
	3.5.2.3. Parameters and Value Notifying Attributes of Alerts classes

	3.6. State Machines
	3.6.1. General // 一般
	3.6.2. States, Names of States, and Current State
	3.6.3. State Attributes
	3.6.4. Valid/Invalid // 有効/無効
	3.6.5. Initial State
	3.6.6. Transitions and State Transition classes // 遷移及びState Transition classes
	3.6.6.1. General // 一般
	3.6.6.2. Trigger classes of State Transition classes
	3.6.6.3. Maximum Allowable Transition Time and Minimum Allowable Transition Time
	3.6.6.4. Effective States for Operations

	3.7. Diagnostic Rules
	3.8. Other Features // その他
	3.9. Condition Expression // 条件式

	4. Functional Class
	4.1. General // 一般
	4.2. Parent-Child Relation // 親子関係
	4.3. standard Functional Class // 標準的なFunctional Class

	5. Memory Functional Class
	5.1. General // 一般
	5.2. Design Parameters // 設計パラメータ
	5.2.1. General // 一般
	5.2.2. FirstAddress and LastAddress
	5.2.3. MaximumUploadLength
	5.2.4. AlignmentLength

	5.3. Operations
	5.3.1. General // 一般
	5.3.2. MemoryLoad
	5.3.3. MemoryDump
	Appendix A. Acronyms // 略語集
	Appendix B. An Example of a Functional Object
	B.1. General // 一般
	B.2. Functional Object
	B.3. Attributes
	B.4. Operations
	B.5. Event Classes
	B.6. STATE MACHINES

	Appendix C. History of Terminology Changes 用語の変更の履歴

