JERG-0-060-TM001A

限定なし

ロバスト設計の実践事例集

2025年3月28日 A改定 (2021年5月14日 初版制定)

宇宙航空研究開発機構

免責条項

ここに含まれる情報は、一般的な情報提供のみを目的としています。JAXA は、かかる情報の正確性、有用性又は適時性を含め、明示又は黙示に何ら保証するものではありません。また、 JAXA は、かかる情報の利用に関連する損害について、何ら責任を負いません。

Disclaimer

The information contained herein is for general informational purposes only. JAXA makes no warranty, express or implied, including as to the accuracy, usefulness or timeliness of any information herein. JAXA will not be liable for any losses relating to the use of the information.

発行

〒305-8505 茨城県つくば市千現 2-1-1 宇宙航空研究開発機構 安全・信頼性推進部 JAXA(Japan Aerospace Exploration Agency)

1	適用範囲	1
2	関連文書	1
	2.1 適用文書	1
	2.2 参考文書	1
3	事例集	2
	3.1 ロケット用ターボポンプ設計	2
	3.1.1 背景と目的	2
	3.1.2 実施内容	4
	3.1.3 まとめ	6
	3.2 ベアリング設計	9
	3.2.1 背景と目的	9
	3.2.2 実施内容	9
	3.2.3 まとめ	. 10
	3.3 シミュレーションによる効果的な吸収体配置レイアウトの最適化	. 11
	3.3.1 目的	. 11
	3.3.2 実施内容	. 11
	3.3.3 まとめ	.13
	3.4 機構解析ツールによる Latch 設計	14
	3.4.1 背景と目的	14
	3.4.2 実施内容	14
	3.4.3 まとめ	.15
	3.5 自動車のユーザ評価 (定性・定量) データへの適用	. 16
	3.5.1 背景・目的	16
	3.5.2 定性・定量データを扱う PSD 手法の概要	16
	3.5.3 事例適用	. 19
	3.6 差動伝送線路の多目的満足化設計	24
	3.6.1 背景・目的	24
	3.6.2 検討モデル	24
	3.6.3 メタモデリング	25
	3.6.4 選好度の設定及び絞り込み結果	27
	3.6.5 まとめ	. 30

1 適用範囲

本事例集は、JERG-0-060 ロバスト設計ハンドブックの事例集及び解説集として制定されるもの である。これまでロバスト設計技術の宇宙機開発への適用は、具体的な適用例が少なかったが、本 事例集を参考に、適用が進むことを期待して制定したものである。宇宙機開発のエンジニアの読み やすさを考慮して、解説文と図表による説明の構成としている。個々の内容の詳細については、適 用文書に記載の論文を参考にすることを推奨する。

ロバスト設計の適用に当たっては、ロバスト設計の専門家の支援を仰ぐことが推奨される。

2 関連文書

2.1 適用文書

なし

2.2 参考文書

(1) JERG-0-060 ロバスト設計ハンドブック

3 事例集

3.1 ロケット用ターボポンプ設計

3.1.1 背景と目的

(1) 液体ロケットエンジン用ターボポンプ

液体ロケットエンジンに用いられるターボポンプは、タンクから推進剤(液体酸素や液体水素など)を高圧状態にしてエンジン燃焼室に送り込むための高速回転機械である。ターボポンプは、エネルギー変換を目的とした機能を果たすために上位システム(ロケットエンジンシステム)に組込まれ、上位システムを構成する1つの機械システムとして扱われる。一方、ロケットの推進剤をタンクからエンジン燃焼室に送る役目を担うため、液体ロケットエンジンの「心臓」と呼ばれ、上位システムの成立性や信頼性を大きく左右する重要な構成機械である。

一般の産業用回転機械と比較して極めて高速回転で高いエネルギー密度を有するロケット用ター ボポンプは、これまでの開発において多くの軸振動に関連する不具合と、それに伴う大規模な手戻 り作業の発生を経験してきた。また、国際競争が激化している近年の宇宙産業においては、開発ス ピードの向上やライフサイクルコストの低減がさらに求められている。このような背景から、概念 設計段階において軸振動のような動的挙動に関わる問題を抜本的解決する設計手法の構築が求めら れてきた。

(2) ターボポンプのダイナミック設計と品質工学

従来のターボポンプ設計では、流体力学的な最適化(羽根車の翼形状最適化など)を中心とした 設計プロセスであった。ターボポンプを構成する各要素の効率や流力性能の最適化に重点が置かれ、 ロータシステムなどの複数要素から成り立つシステム最適化は後回しにされてきた。したがって、 軸振動のようなシステム問題に対して必ずしも最適なターボポンプが設計できていない可能性があ った。この問題を解決するための新たな設計手法の確立を目標に、JAXA及びロケット用ターボポ ンプのステークホルダー、大学などの研究機関が協働して「ターボポンプのダイナミック設計」に 関する研究⁽¹⁾⁽²⁾を 2010 年より始めた。

ダイナミック設計は、以下の設計概念⁽²⁾に基づく上流設計段階での適用を考えた設計手法である。 なお、設計手法の詳細については参考文献(2)~(5)を参照いただきたい。

① ダイナミック設計

定常・一定・静的など、動きや応答などを取り入れない静的設計(従来設計)に対し、非定常・ 変動・安定性・相互干渉など、動きやその応答を考慮する設計手法。 ②多領域最適化

1つのサブシステムを1領域とし、領域毎に最適化を実行しつつ、それらを包含するシステム において全体最適を目指す設計方法。ターボポンプにおいては、ポンプ(インデューサ+インペ ラ)、タービン、軸受、シールなどのサブシステムが「領域」にあたる。

③形態設計

翼プロファイルなどのような個々の要素形状を追求するのではなく、ターボポンプサブシステ ムの配置配列、軸スラストバランス、内部循環流路など、システム形態を第一義に設計する手法。

ダイナミック設計では、複数サブシステムから構成される全体システム(ターボポンプ)の最適 化に重点を置いているが、その達成のためには、いくつかの課題があった。例えば、上位システム の要求を適切にサブシステムに伝達する方法、各サブシステムの設計パラメータと全体システムの 特性との関係性を把握して適切な設計プロセスを構築する方法などが課題として挙げられる。また、 上流設計への適用を前提としたダイナミック設計では、詳細設計などの下流工程における微調整に よって生じる特性のばらつきを抑える工夫も必要である。そこで、ダイナミック設計に品質工学を 取り込むことで、これらの課題の解決を試みた。

瀧田らは、ターボポンプのポンプを駆動するタービンを対象にして、QFD とロバスト設計を連携 させた最適設計を実施した^{(6)~(14)}。従来の最適設計では設計パラメータの選択が設計者の知識や経 験に依存し、最適設計にて得られた結果が必ずしも上位システム要求を反映していない場合があっ たが、QFD とロバスト設計の組み合わせにより、上位要求に合致した最適化が可能になると考えら れる。また、本手法はロジカルであるため設計者にとっては扱い易く、実践的設計手法として有用 である。次項に本事例「QFD とロバスト設計手法を組み合わせたロケット用タービンの最適化」の 概要について述べる。また、本事例の解説用スライド資料も添付するので、詳細についてはそちら を参照いただきたい。

なお、本事例はタービン要素に対するロバスト設計の適用例であるが、ターボポンプの全体シス テムに対するロバスト性の評価についても様々な試みを行っており^{(20)~(25)}、品質工学的手法だけで なく応答曲面法に基づく信頼度評価手法⁽²⁵⁾などについても検討している。また、複数サブシステム によって構成されるターボポンプは、全体システムとサブシステムとの関係性も複雑になる。シス テム全体を最適化するためには、その関係性を明らかにして適切に設計プロセス(設計順序や設計 パラメータの取扱い方法など)へ反映することが重要となる。そこで、QFD を援用して適切な設計 プロセスを構築するための検討も行っている^{(21)~(26)}。例えば、特性要因図を利用して QFD の二元 表を作成する手法⁽²⁴⁾⁽²⁵⁾や、QFD と公理的設計の概念を組み合わせた手法⁽²⁶⁾など、様々な工夫や試 みを行っていることも補足しておく。

3.1.2 実施内容

(1) 事例「QFD とロバスト設計手法を組み合わせたロケット用タービンの最適化」の概要 (6)~(14)

本節では、「QFD とロバスト設計手法を組み合わせたロケット用タービンの最適化」事例のロバ スト設計部分について概要を述べる。本事例は、液体ロケットエンジン用ターボポンプのタービン を対象とし、Thomas Force と呼ばれる不安定化励振力を低減するタービン形態・形状を見出すこ とを目的とした研究の成果である。なお、最適化の対象タービンは、LE-7 原型エンジンの液体水素 ターボポンプ用タービン(以降、現行翼と呼ぶ。)の仕様をベースにした。

最適化は、【STEP1】QFD を活用して設計パラメータ(制御因子)を選定し、【STEP2】1次元損 失モデルを用いてロバスト設計を実施し、【STEP3】最後に CFD 解析により Thomas Force の低減 効果を評価する流れで実施した。また、ロバスト設計は、①パラメータダイヤグラムの設定、②最 適条件の定義、③制御因子の設定、④誤差因子の設定、⑤要因効果図及び最適条件の設定、⑥再現 性の確認、というオーソドックスな手順により実施した。

① パラメータダイヤグラム

ロケット用タービンの機能は、タービン駆動ガスが持つ流体エネルギーを軸出力に変換し、同 軸で繋がれたポンプを駆動することであり、これを基本機能と定義した。入力はタービン圧力比、 出力はタービン軸出力とした。タービンの場合、非線形の入出力関係となるため、標準 S/N 比を 用いた動特性として評価する。Thomas Force はタービン動翼先端からの漏洩量の周方向不均一 によって生じるトルクアンバランス力であるため、チップクリアランス変化や形状ばらつきをノ イズとして設定し、ノイズに対する出力が変化しにくい(S/N 比が大きい)最適化を実施すれば Thomas Force を低減することができると考えた。

② 最適条件

最適条件は、現行翼と同等のタービン軸出力を有しながら標準 S/N 比を最大化することとして 定義した。なお、前提条件は動翼チップシュラウド無し、制約条件はエンジンシステムとマッチ ングすること(=現行翼と同等の軸出力)とした。

③ 制御因子

表 3.1-1 に制御因子の一覧を示す。計算負荷が比較的小さい 1 次元損失モデルによる解析を 用いることから、極力大きな直交表として L36 (2³×3¹³)を使用し、QFD から求めた重要設計パ ラメータを含む 16 パラメータを選定した。

④ 誤差因子

Thomas Force に対して影響が大きいチップクリアランスはターボポンプの作動状態によって 変化し、コントロールできないため、ノイズ(外乱)として与えた。また、製造誤差や作動中の 形状ばらつき(内乱)も含めて合計 15 因子をノイズとして選定した。表 3.1-2 に誤差因子の一覧 を示す。

⑤ 要因効果図及び最適条件

標準 S/N 比に対する感度の大きい因子は8パラメータあり、そのうち2パラメータは軸出力特性の指標である1次比例係数に対しても感度は大きいが、トレードオフの関係は見られない。したがって、最適条件の定義に基づいた制御因子の組み合わせを比較的容易に選択することができた。

⑥ 再現性の確認

⑤ における制御因子の組み合わせに対して再現性確認を行った結果、要因効果図からの推定値 と解析結果の利得の差は 0.05dB であり、利得の再現性を有していると判断できる。本制御因子 の組み合わせによる最適翼は、S/N 比は約 4dB の利得(ばらつき 30%低減)を有し、出力特性も 現行翼を上回る結果が得られた。

⑦ CFD 確認結果

⑥ は1次元損失モデルを用いたロバスト設計での評価であるが、CFD を用いて Thomas Force の低減効果を確認した。その結果、最適翼の Thomas Force は現行翼に対して 30%低減し、1次 元損失モデルによる解析と同等な改善効果が見られた。

N-		田之夕			【参考】QFD重要設計		
NO-		因于名	甲世	水準1	水準2	水準3	パラメータ
1	А	ノズル 最大翼厚/コード比	-	0.180	0.200	-	
2	В	動翼 最大翼厚/コード比	-	0.160	0.180	-	
3	С	動翼 後縁くさび角	de g.	4.000	5.903		
4	D	動翼反動度(1N出口静圧)	kg/cm2	175.0	179.2	185.0	0
5	E	ノズル ソリディティ	-	1.600	1.967	2.100	0
6	F	ノズル スタガ角	de g.	35.0	45.0	55.0	
7	G	ノズル 出口角度	de g.	16.0	20.0	24.0	0
8	н	ノズル コード長	mm	36	41.2	45	
9	I	動翼 ソリディティ	-	1.20	1.65	2.10	0
10	J	動翼 前縁半径	mm	0.600	0.711	0.800	
11	К	動翼 迎角	de g.	0.00	1.00	2.00	0
12	L	動翼 出口角	de g.	24.0	27.1	31.0	0
13	М	動翼 スタガ角	de g.	-12.0	-18.0	-24.0	
14	Ν	動翼 コード長	mm	13.0	16.2	19.0	0
15	0	平均径	mm	95	100	105	0
16	Р	チップクリアランス	mm	0.500	0.550	0.600	0

表 3.1-3 制御因子の一覧 (L36 (2³×3¹³))

No	田之夕	幽居	誤差因子の水準		
NO.		単世	水準1	水準2	
Α	ノズル スロート面積	mm2	0.00%	0.30%	
В	動翼 スロート面積	mm2	0.00%	0.30%	
С	ノズル スタガ角	deg.	0%	+0.5	
D	ノズル 最大翼厚/コード比	-	0.00	0.005	
Е	ノズル 出口角度	deg.	0.000	0.050	
F	ノズル コード長	mm	0%	0.10	
G	ノズル 後縁厚さ	mm	0.000	0.005	
Н	動翼 前縁半径	mm	0.00	0.050	
Ι	動翼 スタガ角	deg.	0.00	0.50	
J	動翼 最大翼厚/コード比	-	0.00	0.005	
К	動翼 コード長	mm	0.00	0.10	
L	動翼 出口角	deg.	0.000	0.050	
М	動翼 後縁厚さ	mm	0.000	0.005	
Ν	平均径	mm	-0.25	+0.25	
0	チップクリアランス	-	0%	50%	

表 3.1-4 誤差因子の一覧(L16 (2¹⁵))

3.1.3 まとめ

今回、ロケット用ターボポンプにおけるロバスト設計の適用事例として、QFD とロバスト設計手 法を組み合わせたロケット用タービンの最適化について簡単に紹介した。「ターボポンプのダイナミ ック設計」に関する研究では、品質工学や QFD を活用した様々な試みを実施した。基本的な考え方 やアイデアはターボポンプ以外の機械全般に適用可能と考えられ、様々な製品の設計開発に対して 少しでも役立つ知見が提供できれば幸いである。

<参考文献>

- (1) 宇宙航空研究開発機構、「ターボポンプ」、近未来の設計手法 ~ ロケットエンジンの"心臓 部"~, https://fanfun.jaxa.jp/topics/detail/2760.html.
- (2) 内海政春,吉田義樹,ターボポンプのダイナミック設計(軸振動の抑制をめざしたロータシス テムの最適化),ターボ機械, Vol. 40, No. 6 (2012), pp. 324-330.
- (3) Uchiumi, M., Shimagaki, M., Kawasaki, S., Yoshida, Y. and Adachi, K., Integrated Design Method of a Rocket Engine Turbopump Sub-system for Suppressing Rotor Lateral Vibration, Proceedings of 28th Congress of the International Council of the Aeronautical Sciences, ICAS 2012-4.3.4, Brisbane, Australia (2012).
- (4) 内海政春,島垣満,川崎聡,ターボポンプのダイナミック設計(その2),ターボ機械,Vol.41, No. 10 (2013), pp. 578-585.
- (5) 川崎聡,島垣満,内海政春,安達和彦,要素の配置配列をパラメータとしたロケット用ターボ

ポンプの形態設計,日本機械学会論文集, Vol. 82, No. 842 (2016), p.16-00134.

- (6) 瀧田純也,福岡勝,内海政春,國枝麿,船崎健一,ロケットターボポンプ用タービン設計への QFDの適用,第41回信頼性 保全性シンポジウム発表報文集 (2011), pp. 213-718.
- (7) Takida, J., Akao, Y., Funazaki, K. and Uchiumi, M., An Application of QFD Method for Design of Rocket Turbopump Turbines, Proceedings of 17th International QFD Symposium (ISQFD 2011), Stuttgart, Germany (2011).
- (8) 瀧田純也,福岡勝,國枝麿,船崎健一,内海政春,QFD を用いたロケットターボポンプ用ター ビンの重要設計パラメータの抽出,宇宙航空研究開発機構研究開発資料,JAXA-RM-11-021 (2012).
- (9) 瀧田純也,内海政春,島垣満,船崎健一,ロバスト設計手法によるターボポンプ用タービンの Thomas Force 低減,ターボ機械, Vol. 40, No. 6 (2012), pp. 350-358.
- (10) 瀧田純也, 内海政春, 島垣満, 船崎健一, ロバスト設計手法を用いたターボポンプ用タービン のトーマスフォース低減, 宇宙航空研究開発機構研究開発資料, JAXA-RM-11-011 (2012).
- (11) 瀧田純也,藤本良一,船崎健一,内海政春,QFD とロバスト設計手法を組合せたロケットター ボポンプ用タービンの最適化,第42回信頼性・保全性シンポジウム発表報文集 (2012), pp. 365-370.
- (12) 瀧田純也,福岡勝,國枝麿,船崎健一,内海政春,ロケットターボポンプ用タービンのパラメ
 ータ設計(第1報:QFDを用いた重要設計パラメータの抽出),ターボ機械, Vol. 40, No. 12
 (2012), pp. 705-714.
- (13) 瀧田純也, 船崎健一, 内海政春, 島垣満, ロケットターボポンプ用タービンのパラメータ設計
 (第2報:タービン Thomas Force 低減のための最適化), ターボ機械, Vol. 41, No. 2 (2013),
 pp. 78-88.
- (14) 瀧田純也,福田太郎,宇山遼一,船崎健一,内海 政春,ロケットターボポンプ用タービンの パラメータ設計(第3報:タービン諸特性(回転部重量、翼応力、動翼共振回避、Thomas Force) を考慮したロケットターボポンプタービンの多目的最適化),ターボ機械, Vol. 41, No. 6 (2013), pp. 368-377.
- (15) 丑澤拓夢,他6名,軸振動の低減を目指したロバスト設計援用によるターボポンプロータシス テムの形態設計,日本機械学会2013年度年次大会講演論文集,J101033 (2013).
- (16) 岩崎仁,四宮教行,内海政春,ターボポンプロータの形態設計手法におけるロバスト設計の適用に関する検討,日本機械学会,Dynamics and Design Conference 2014 論文集, 227 (2014).
- (17) 四宮教行,内海政春,岩崎仁,ターボポンプロータの形態設計手法におけるひずみエネルギーを考慮したロバスト設計手法,第72回ターボ機械協会(大分)講演会講演論文集 (2014).
- (18) 四宮教行,内海政春,岩崎仁,ターボポンプロータの形態設計手法における配置・配列を考慮 したロバスト設計の検討,日本航空宇宙学会北部支部 2015 講演会講演論文集,JSASS-2015-H058 (2015).

- (19) 四宮教行,内海政春,岩崎仁,設計ばらつきを考慮したターボポンプロータの設計手法,第73 回ターボ機械協会総会講演会講演論文集 (2015).
- (20) 久保世志, 内海政春, ターボポンプの高信頼度評価手法, ターボ機械, Vol. 45, No. 3 (2017), pp. 136-147.
- (21) 川崎聡,他5名、ロケット用ターボポンプの多領域システム設計における品質機能展開(QFD)の援用、宇宙航空研究開発機構研究開発資料,JAXA-RM-12-009 (2013).
- (22) 川崎聡,他5名,ロケット用ターボポンプの多領域最適設計における品質機能展開(QFD)の 援用,ターボ機械, Vol. 41, No. 10 (2013), pp. 602-607.
- (23) 弘松純,,他5名,QFD 援用によるロケットターボポンプ多領域最適化設計,宇宙航空研究開 発機構研究開発資料,JAXA-RM-13-007 (2013).
- (24) 黒木康洋,他6名,QFD 援用によるターボポンプ内部循環流れの多領域最適化設計,宇宙航空 研究開発機構研究開発資料,JAXA-RM-15-002 (2016).
- (25) 川崎聡,他7名,品質機能展開を利用したターボポンプの多領域設計支援,宇宙航空研究開発 機構研究開発資料, JAXA-RM-15-009 (2016).
- (26) 黒木康洋,川崎聡,矢田和之,品質機能展開を援用したターボポンプの多領域最適設計プロセスの構築,ターボ機械, Vol. 45, No. 3 (2017), pp. 148-156.

以上

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

PAGE: 1/32

2011年作成資料を基に2020年に再編集

QFDとロバスト設計手法を組合せた ロケットターボポンプ用タービンの最適化

国立研究開発法人 宇宙航空研究開発機構 研究開発部門 第四研究ユニット

Dynamics Design Team

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

PAGE: 2/32

1. 研究の背景

- ロケットターボポンプ用タービンの現状
- QFD(品質機能展開)とは?
- 最適化の流れ

2. ロバスト設計手法によるタービン最適化

- 設計対象
- ロバスト設計の手順
- Thomas Force低減を目的としたロバスト設計実施例

3. まとめ

固体ロケットブースタ

1 5 m

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

第1段エンジン LE-7A

(種子島宇宙センター)

PAGE: 3/32

1. 研究の背景

第1段エンジン (LE-7A)

1. 研究の背景

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

重要度 88.8 65.2 47.1 127.6 109.5 25.7 54.1 51.6 143.4 143.9 105.8 11.6 133.4 55.7 121.7

1. 研究の背景

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

■ QFDの目的と成果

PAGE: 11/32

Dynamics Design Team

1. 研究の背景

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

PAGE: 12/32

■ Thomas Forceとは?

- ロケットターボポンプ用のタービンでは、タービンの不安定化励振力(=Thomas Force)による軸振動の 増大が問題となる場合があり、例えば、LE-7A 液体水素ターボポンプ開発初期には、Thomas Forceに 起因する軸振動問題(文献[4])が発生した。
- この事例ではターボポンプシステム全体で減衰を増やすことによって振動を抑制することが出来ている。 しかしながら、新たなターボポンプを開発では、従来の対策だけでは振動を十分に抑制できない可能性 も考えられることから、Thomas Force自体を低減するようなタービン形状を見出すことが重要である。

1. 研究の背景

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

■ ロケットターボポンプ開発時の事例

PAGE: 13/32

- LE-7A 液体水素ターボポンプ開発初期において、Thomas Forceに起因する亜同期(250 Hz帯域)の 軸振動が過大であった
- シールリングに流入する流体に対し軸回転方向と逆方向に予旋回流を与えることによって、軸系全体の減衰比が上がり、亜同期軸振動を抑制することに成功した

Dynamics Design Team

1. 研究の背景

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

■ 研究目的

PAGE: 14/32

ロバスト設計手法の援用によりThomas Forceを低減するタービン形態・形状を見出す

■最適化の流れ

QFD(品質機能展開)とロバスト設計との組合せ

理由 ✓ QFDは重要な品質についての指標を与えることは出来るが、その品質を実現するための検討は別に行う必要がある

- 何を最適化するか、どの設計パラメータを選択するか、については設計者の技量や経験に依存
- ✓ 両者を組み合わせることで、お互いの弱点を補強できる

JAXA, Kakuda Space Center

2. ロバスト設計手法による タービン最適化

- 設計段階で、様々なノイズ(=誤差因子)の影響を考慮し、品質を作りこむ
- ノイズを退治するのではなく、ノイズの存在を認識した上で、その影響が小さくなるように設計する
- ノイズに対するばらつきを最小化(第一段階)した後に、目標値に合わせる2段階設計

2. ロバスト設計手法による タービン最適化 JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

■ 設計対象

LE-7 原型エンジン 液体水素ターボポンプ用タービン

以降	"現行条件"と称す
の中、	現日本日でかり

Turbine Type	Impulse Turbine
Stage Number	Single Stage
Mean Diameter	200 mm
Rotational Speed	46,300 rpm
Pressure Ratio	1.46
Shaft Power	23.6 MW

■ 解析手法

設計パラメータの組合せ毎のタービン性能評価には、1次元損失モデル(AMDC+KOモデル)を使用

既存1D損失モデル

- AMDC+KO 損失モデル[※]
 - 翼列試験を基にした実験式により定式化されている
 - 個々の損失要素毎にモデルが構成されている
 - 航空エンジンやガスタービンの性能予測に広く用いられている

※ Ainley & Mathieson[1951] Dunham & Came[1970] Kacker & Okapuu[1982] 詳細は文献[6][7] 損失係数の構成 $V(I) \wedge Z \otimes \overline{M}$ $K_T = K_P (1+60(M-1)^2) f_{Re} + K_S + K_{TE} + K_C$ $f = \int_{\mathcal{I}} \int_{\mathcal$

PAGE: 18/32

2. ロバスト設計手法による タービン最適化 JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PAGE: 19/32

PROPRIETARY INFORMATION

■ Thomas Forceの評価方法

Thomas によるモデル式(文献[8])により評価する

Thomas Tip Clearance Whirl Model

- ロケットターボポンプ用タービンでは、回転数が高いこと、動翼の翼枚数が十分多いことから、準定常的な取り扱いが可能
- 全周均一のクリアランスとした定常解析から求めたトルク(T₀、T₁)を用いてThomas Forceを評価する

Constraint functions

Turbine Flow Rate: Fixed (41.2 kg/s) Shaft Power: More than 23.6 MW

● QFDによる重要設計パラメータを含む合計16パラメータを選定

	表:L36(2 ³ ×3 ¹³)による制御因子組合せ								
NL.		m z 6	224 /		水準			『参考】 QFD重要設計	
NO.		因于名	卑ሢ	水準1	水準2	水準3	偏考	パラメータ	
1	Α	ノズル 最大翼厚/コード比	-	0.180	0.200	-			
2	В	動翼 最大翼厚/コード比	-	0.160	0.180	-			
3	С	動翼 後縁くさび角	deg.	4.000	5.903	-			
4	D	動翼反動度(1N出口静圧)	kg/cm2	175.0	179.2	185.0		0	
5	Е	ノズル ソリディティ	-	1.600	1.967	2.100		0	
6	F	ノズル スタガ角	deg.	35.0	45.0	55.0			
7	G	ノズル 出口角度	deg.	16.0	20.0	24.0		0	
8	Н	ノズル コード長	mm	36	41.2	45			
9	I	動翼 ソリディティ	-	1.20	1.65	2.10		0	
10	J	動翼 前縁半径	mm	0.600	0.711	0.800			
11	К	動翼 迎角	deg.	0.00	1.00	2.00		0	
12	L	動翼 出口角	deg.	24.0	27.1	31.0		0	
13	М	動翼 スタガ角	deg.	-12.0	-18.0	-24.0			
14	Ν	動翼 コード長	mm	13.0	16.2	19.0		0	
15	0	平均径	mm	95	100	105	周速一定	0	
16	Р	チップクリアランス	mm	0.500	0.550	0.600		0	

2. ロバスト設計手法による タービン最適化 JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

■誤差因子(ノイズ)の設定

PAGE: 25/32

- **チップクリアランス**はターボポンプの作動状態によって変化しコントロール出来ない為、大小2水準の ノイズ(外乱)として与える
- 製造誤差や作動中の形状ばらつき(内乱)も含めた15因子を選定し、L16 (2¹⁵)直交表に割り付ける

No					
	田之夕	業份	誤差因-	子の水準	
110.			水準1	水準2	■ 誤差囚士の設定限拠
А	ノズル スロート面積	mm2	0.00%	0.30%	●「エップに油島」と明本の古い習い状に明洁する制御日でについっ
В	動翼 スロート面積	mm2	0.00%	0.30%	●「ケッノ 漏洩里」と 関連の 局い 異形 仏に 関連9 る 制御 囚 士に フい
С	ノズル スタガ角	deg.	0%	+0.5	翌道や作動中の形状のはらつざを与える。⇒内乱として
D	ノズル 最大翼厚/コード比	-	0.00	0.005	水準値は一般的な製造公差を想定
E	ノズル 出口角度	deg.	0.000	0.050	
F	ノズル コード長	mm	0%	0.10	
G	ノズル 後縁厚さ	mm	0.000	0.005	● ロータ振動レベルの変動を想定し、チップクリアランスを変動させ、
Н	動翼 前縁半径	mm	0.00	0.050	⇒外乱として (クリアランスの水準に対し、50%の変動を与える)
I	動翼 スタガ角	deg.	0.00	0.50	
J	動翼 最大翼厚/コード比	-	0.00	0.005	
К	動翼 コード長	mm	0.00	0.10	
L	動翼 出口角	deg.	0.000	0.050	
М	動翼 後縁厚さ	mm	0.000	0.005	
Ν	平均径	mm	-0.25	+0.25	
0	チップクリアランス	-	0%	50%	

2. ロバスト設計手法による タービン最適化 JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

最適翼の1次比例係数は1.03であり、

現行翼を上回る

PAGE: 27/32

PROPRIETARY INFORMATION

■ 最適条件の選定と再現性確認

- ●「最適条件の定義」に基づき、S/N比が最大となるよう制御因子を組合せる
- ▶ この組合せに対して再現性確認を行った結果、利得の再現性を有していることを確認
- 最適翼のS/N比は現行翼に対し約4dB の利得(=ばらつき30%低減)を有し、出力特性も現行翼を上回る

利得の再現性確認

最適条件の組合せ

【最適条件】 S/N比が最大となる組合わせ

Control Factor	D	E	G	Ι	L	N	0	Р
Optimum Level	1	3	1	3	1	1	1	1
Original(Initial) Level	2	2	2	2	2	2	2	3

■ 最適翼の組合せ(現行翼を基準として)

- ノズル出ロ静圧(因子D)を小さく
- ② ノズルソリディティ(因子E)を大きく
- ③ ノズル出口角度(因子G)を小さく
- ④ 動翼ソリディティ(因子I)を大きく
- ⑤ 動翼出口角度(因子L)を小さく
- ⑥ 動翼コード長(因子N)を小さく
- ⑦ 平均径(因子O)を小さく
- ⑧ チップクリアランス(因子P)を小さく

	Signal to Nois	se Ratio [dB]	Primary				
	Estimation	Analysis	Proportional				
	(Predicted)	(Actual)	Factor				
Optimum	65.48	65.42	1.03				
Original	61.58	61.57	1.00				
Gain	3.90	3.85					
	3.90 - 3.85 =	0.05					
 ● 要因効果図から利得を推定すると、3.90 [dB] 実際にパラメータを組合わせた解析結果は、3.85 [dB] その差は0.05 [dB](得られた利得に対して1%程度)であり、 利得の再現性を有している 							

● 約4 [dB]の利得は、ばらつきが約30%低減(=1/(10^(4/20))=0.63) することに相当

Dynamics Design Team

2. ロバスト設計手法による タービン最適化 JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PAGE: 28/32

PROPRIETARY INFORMATION

■最適翼の特性値比較

- 最適翼は現行翼に比べて、平均径が小さく翼枚数が増える方向に、子午面形状は翼高さが増える方向に変化
- 最適翼の翼特性値は、動翼アスペクト比が大きく、翼負荷およびクリアランス翼高さ比が小さくなる方向に変化
 ⇒これらはチップからの洩れの影響を受けにくくなる形状変化であり、技術的感覚とも一致する。

タービン形状特性値の比較

No	Item	Unit		Charac	cteristics		■ 翼特性値の比較
110.	nom	Oint	Ori	ginal	Opti	mized	Aspect Ratio
1	Overview	-	- LANDAN		- TUUT		of Rotor Blade 2.0 1.5 1.0 Height Ratio of Rotor Blade Loading of Rotor
2	Meridional Shape	-					Number of Rotor Blades ——Original ——Original
3	Mean Diameter	mm	2	00	1	90	◆ 最適翼の翼特性値を現行翼を基準とした
4	Tip Clearance	mm	0.	600	0.	500	レーダーチャートで比較する
	Position		Nozzle	Rotor	Nozzle	Rotor	◆ 今回得られた最適翼は、翼アスペクト比が
5	Number of Blades	-	30	64	30	90	60%増、動翼負荷が20%減、クリアランス翼
6	Blade Height	mm	20.3	22.6	26.1	28.5	高さ比では30%減となっている

2. ロバスト設計手法による タービン最適化

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

■ Thomas Forceの低減効果

PAGE: 29/32

- Thomas Forceの低減効果を検証する為のCFD解析を実施し、1次元解析と同等な低減効果を確認
- 最適翼のThomas Forceは現行翼に比べて30%低減する

\mathcal{D} ynamics \mathcal{D} esign \mathcal{T} eam

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PROPRIETARY INFORMATION

PAGE: 30/32

3. まとめ

JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan

PAGE: 32/32

PROPRIETARY INFORMATION

- QFD(品質機能展開)とロバスト設計手法とを組合わせた最適化よって、"市場のニース"
 (今回はThomas Forceの低減)に合致した最適化を効率よく行うことが出来る
- 今回の最適化では翼応力や固有値等、翼体格としての評価は行っていない 今回得られた最適翼の形状変化はThomas Forceの低減には有効である一方、翼体格の 成立性の観点からは制約となり得ることから、今後は翼体格の成立性評価も含めた最適化を 実施する予定である
- ▶ ロバスト設計が成功する(=利得の再現性が得られる)ポイントは次の通り
 - ① パラメータダイヤグラムを整理し、動特性として考える
 - ・ 基本機能を考え、入出力の関係に整理する
 - ・ 動特性のパラメータ設計により非設計点も含めたロバスト性が向上する
 - ② 多くの制御因子を用いる
 - ・ シミュレーションの場合には、実験と比べ時間・コストの制約を受けないことから、大きい直交表を用いるべき
 - ・ 但し制御因子間の交互作用には注意が必要(水準幅の設定は技術者の力量に依存)
 - ③ 誤差因子の選定
 - ロバスト設計は、ノイズを退治するのではなく、その影響を小さくするように設計する手法
 - ・ 誤差因子の調合や予備試験により、実使用環境で想定されるノイズを抜けの無いように選定する

Dynamics Design Team	参考文献	JAXA, Kakuda Space Center 1 Koganezawa, Kimigaya, Kakuda, Miyagi 981-1525 Japan
		PROPRIETARY INFORMATION

- [1] 赤尾, 品質展開入門(品質機能展開活用マニュアル1), 1990, 日科技連出版社
- [2] 大藤・小野・赤尾, 品質展開法(1)ー品質表の作成と演習(品質機能展開活用マニュアル2), 1990, 日科技連出版社
- [3] 大藤・小野・赤尾, 品質展開法(2)-技術・信頼性・コストを含めた総合的展開(品質機能展開活用マニュアル3), 1994, 日科技連出版社
- [4] Motoi, H.,他7名, "Sub-Synchronous Whirl in the LE-7A Rocket Engine Fuel Turbopump", Second International Symposium on Stability Control of Rotating Machinery (ISCORMA-2), 4-8 August 2003.
- [5] 井上, 他4名, 入門パラメータ設計, pp.148, 日科技連(2008)
- [6] Ainley, D. G., Mathieson, G. C. R., "An Method of Performance Estimation for AXIAL-Flow Turbines", R&M 2974 Aeronautical Research Council, 1957.
- [7] Kacker, S. C., Okapuu, U., 1981, "A Mean Line Prediction Method for Axial Flow Turbine Efficiency", ASME paper no. 81-GT-58.
- [8] Thomas, H. J., "Instable Eigenschwingungen von Turbinenlaufern, Angefaucht durch die Spaltstromungen Stopfbuschsen un Beschaufelungen", AEG-Sonderdruck, (1958).

3.2 ベアリング設計

3.2.1 背景と目的

ホイール・タイプSは、タイプM、Lに続いて開発された姿勢制御装置である。いずれのタイプ もローテティングマスの支持に油潤滑玉軸受が採用されている。ホイールに使用される玉軸受には、 高速回転において長寿命かつ低摩擦トルクであることが要求され、軸受設計において最も重要なの はリテーナインスタビリティ(保持器不安定現象)の防止である。リテーナインスタビリティを防 止するためには、保持器のポケットすきま寸法と案内すきま寸法を適切に設計する必要があり、従 来は数多くの試験を行い、試行錯誤しながら保持器のすきま寸法を決定していた。本研究では、軸 受動特性シミュレーションと品質工学を利用してホイール・タイプS用軸受の保持器すきま寸法の 候補を選択し、試験数の削減やロバストな軸受特性の実現に貢献することを目的としている。

3.2.2 実施内容

(1) 軸受動特性シミュレーションとは

本研究で用いた軸受動特性シミュレーションは、玉軸受における保持器の幾何形状や接触部の混 合潤滑状態を考慮したマルチボディダイナミクス解析である。本シミュレーションモデルにより、 リテーナインスタビリティの発生条件を予測できることを過去のホイール開発時に検証している。

(2) 品質工学の適用

品質工学を保持器設計に適用するため、予備シミュレーションを行い、8つの設計パラメータと、 ノイズ、出力を決定した。設計パラメータには予圧、すきま寸法のように制御可能なものだけでは なく、実際には制御が困難でも出力特性に与える影響を調べるため、油膜厚さや表面粗さも設計パ ラメータとして設定した。出力は、保持器安定性を評価する上で適していると考えられる保持器並 進速度を選択した。

(3) シミュレーション結果

望目特性の SN 比と感度を計算し、各設計パラメータの影響を調べた。SN 比を高くするために は、案内すきまを大きく、ポケットすきまを小さく設定することが良いことが分かった。また、再 現性の確認のため、SN 比の最適条件と最悪条件におけるシミュレーションを行い、推定結果が妥当 であることを確認した。

(4) 軸受回転試験による検証

品質工学によって得られた保持器設計結果が妥当であるかを確認するため、すきま寸法が異なる 2種類の保持器を試作し、回転試験を行った。その結果、SN比が高いと推定される保持器を組み込 んだ軸受は、試験雰囲気に依存しない安定な摩擦トルク特性を示すロバストな軸受特性であった。 一方、SN比が低いと推定される保持器を組み込んだ軸受ではリテーナインスタビリティが発生し た。これらの結果から、本研究で構築した保持器設計手法は、軸受設計に有効であることが実証さ れた。

3.2.3 まとめ

本シミュレーション結果や開発試験結果を元に、ホイール・タイプS用軸受の保持器寸法を決定 することができた。また、品質工学を適用するにあたり、シミュレーションの限界と特性を把握し ておくことが効率的に研究開発を進める上で重要であることが分かった。

3.2 ベアリング設計

目次

- 1. 研究背景
 - ホイール・タイプS開発
 - ホイール用軸受の技術課題
 - 目的
- 2. 軸受動特性シミュレーション
 - モデル概要
 - 混合潤滑モデル
 - モデルの妥当性検証
 - シミュレーション条件
- 品質工学の適用
 - P-ダイアグラム
 - 設計パラメータとノイズの水準
 - 直交表への割付
 - SN比&感度の計算
- 4. シミュレーション結果
 - 保持器並進速度
 - SN比の要因効果図
 - 感度の要因効果図
 - 再現性の確認
- 5. 軸受回転試験による検証
 - 供試体
 - 試験装置
 - 試験結果
- 6. まとめ・教訓

1. 研究背景

ホイール・タイプS開発

- 人工衛星・探査機の姿勢制御装置ホイー ル・タイプSを開発(2008~2012年,タイ) M/Lをこれより以前に開発済)
- ローテティングマス/シャフトを2ペア(4個 の<u>油潤滑玉軸受で支持</u>

衣I クイノS囲発江惊	表 1	プS開発仕	:様
-------------	-----	-------	----

2008~2012年 タイプ					
		項目	仕様値		
用光灯	最大蓄積角道	重動量	5Nms, 10Nms		
´シャフトを2ペア(4個)	最大出力トバ	レク @5000rpm	> 0. 05Nm		
持	最大回転数		± 5000 rpm		
	消費電力	t°-⁄05000rpm, 0. 05Nm	< 60W		
		定常@5000rpm, 0Nm	< 15W		
シャフト ローテティング	バランス		静バランス: < 0.25×10 ⁻⁵ kgm		
TX P			動バランス : < 2×10 ⁻⁷ kgm ²		
マスパランス	擾乱		力:		
調整窓			<2×10 ⁻⁴ ×f ² N		
			010≦f≦83.3Hz <1.4N 0f >83.3Hz		
DCブラシレス					
E-9			トルク:		
			<4×10 ⁻⁵ ×f ² Nm		
● 振動减衰機構			@10≦f≦83.3Hz		
面図と主要構成			<0.28Nm @f >83.3Hz		
	電源電圧範囲	Ħ	22 to 52 Vdc		
• 組合せアンギュラ玉軸	信号インタン	フェース	アナログ		
受	質量		5Nms:<3.9kg, 10Nms:<5.3kg		
• 7000C(内径10mm)	寸法		$\langle \Phi 230$ mm \times H100mm		
 油潤滑 	機械環境		正弦波:245.2m/s ² (25G)		
 ・ 綿ベースフェノール保 			ランダム波:		
指出 · · · · · · · · · · · · · · · · · · ·			196.0m/s ² r.m.s.(面内),		
ни с.			206.3m/s²r.m.s.(面外)		
	寿命	地上保管時	> 5years		
ホイール開発と並行して		軌道上	>10years		
軸受の研究開発を実施		•			

(参考文献)井澤克彦,岩田隆敬,田島崇男,田邉和久,梶田直希,谷口典史:国産新型リアクションホイール・ タイプS:高信頼性低擾乱ホイールファミリー小型タイプの開発,第56回宇宙科学技術連合講演会講演集, JSASS-2012-4588(2012-11).

1. 研究背景

油潤滑玉軸受

ホイール用軸受の技術課題(1/2)

- ホイール用軸受には、真空、微小重力下において、 下記の機能・性能が要求される.
 - ➢ 数千rpmの高速回転
 - ▶ 長寿命
 - ▶ 低く安定した摩擦トルク・低振動

上記性能を実現するため,ホイール用軸受は極 微量の油で潤滑され,保持器に油を含浸させて, オイルリザーバの役割を持たせる. さらに, 保持 <u>器不安定現象(リテーナインスタビリティー;RI)の</u> 防止が必須である。

外輪 玉 保持器 内輪

RIは軸受の寿命低下,ホイールの性能劣化を引き起こすため,発生条 件を予測し、防止することが重要

1. 研究背景

ホイール用軸受の技術課題(2/2)

保持器挙動に影響を与えるパラメータは、以下の通り、過去の試験等から明らかになっている.

1. 研究背景

目的

- ホイール・タイプSの開発を効率的に進めるために、過去の開発で得られた知見を最 大限に活用し、軸受の設計・評価試験を行う。
- 保持器設計に関わる評価試験数を減らすため、過去の開発時に作成・検証された軸
 受動特性シミュレーションを利用する。
- 品質工学を適用することにより、シミュレーションの効率化を図り、ロバストな軸受(= リテーナインスタビリティーが発生しない軸受)の実現に貢献する.

2. 軸受動特性シミュレーション モデル概要

内輪をシャフトに, 外輪をハウジング に固定した状態を想定

- 内輪, 外輪, 玉, 保持器を剛体と仮定
- 内輪回転, 外輪固定, 玉と保持器の6自由度運動方程式を数値積分
- 重力を考慮
- 玉と内輪, 玉と外輪の接触力はヘルツ接触理論により計算
- 玉と内外輪の間は潤滑油のトラクション、転がり抵抗を考慮
- 保持器と玉,保持器と内輪の接触部では混合潤滑状態をモデル化

(参考文献)

- T. Nogi, K. Maniwa & S. Obara: Dynamic Analysis of Minimally Lubricated Ball Bearings for Space Applications, Proceedings of STLE/ASME International Joint Tribology Conference, IJTC2008-71154 (2008-10).
- 2. T. Nogi, K. Maniwa & S. Obara: Numerical Analysis of Cage Instability in Minimally Lubricated Ball Bearings, Proceedings of World Tribology Congress 2009 (2009-9).

荷重: $w = w_f + w_a$ 摩擦力: $f = f_f + f_a$ w_f :油膜による支持力 w_a :粗さ突起による支持力 f_f :油膜のせん断力 f_a :粗さ突起支持部における摩擦力

 2. 軸受動特性シミュレーション 混合潤滑モデル(2/2)

保持器と外輪の接触部を模擬した摩擦試験を行い,作成した混 合潤滑モデルの検証を行った.

- 摩擦試験では、油量、すべり速度、荷重を変えて、摩擦係数を測定した。
- 保持器/外輪間の摩擦特性をモデル化するためには、高速域で油 不足により油膜厚さが減少することを考慮する必要があることが分 かった。
- 実際の軸受回転中における油膜厚さ(油量)は未知のため, 軸受設計においては, 油膜厚さをパラメータとした解析が必要である.

(参考文献)間庭,野木,小原:宇宙用油潤滑玉軸受の保持器と外輪案内面における摩擦特性,トライボロジー 会議2008春東京予稿集(2008-5).

2. 軸受動特性シミュレーション モデルの妥当性検証

ホイール・タイプM/Lの軸受開発試験データを用いて, 軸 受動特性シミュレーションモデルの妥当性を検証した.

- 開発試験では、大気・真空下において、保持器すきま 寸法を振って(標準,種類1~3)摩擦トルク特性を評価 した。
- シミュレーションでは、保持器すきま寸法と油膜厚さを 振って摩擦トルクを計算した。リテーナインスタビリ ティーが発生する保持器すきま寸法は、試験とシミュ レーションで一致した。

★重要なポイント 軸受シミュレーションがリテーナインス タビリティーの発生条件予測に利用で きることを確認した.

保持器 種類	保持器すきま 寸法	試験結果	シミュレーション結果
標準	ノミナル	・大気圧下,真空圧下において良好なトルク 特性であり,ホイール用軸受の標準保持器 として採用	 ・<u>油膜厚さに依存せず、摩擦トルクは低く、保</u> 持器安定
種類1	ノミナルよりも案 内すきまやや小, ポケットすきま大	 ・大気圧下でスパイク、トルクシフトが発生 ・真空圧下では異音、トルクシフトが発生 (リテーナインスタビリティー発生) 	・ <u>保持器油膜厚さ大の条件で摩擦トルクは高</u> く、リテーナインスタビリティー発生
種類2	ノミナルよりも案 内すきま小, ポ ケットすきま大	 ・大気、真空圧下において、異音を伴うスパイク頻発 ・種類1~3の中では最も程度が良くない (リテーナインスタビリティー発生) 	・ <u>保持器油膜厚さ中・大の条件で摩擦トルク</u> <u>は高く、リテーナインスタビリティー発生</u>
種類3	ノミナルよりも案 内すきま大,ポ ケットすきま大	 ・大気圧下において、異音無きトルク波動あり ・真空移行後、異音無きトルク変動あり (リテーナインスタビリティーは発生していない) 	・ <u>油膜厚さに依存せず、摩擦トルクは低く、保</u> 持器安定

2. 軸受動特性シミュレーション

シミュレーション条件

軸受への要求性能,過去の開発で得られた知見を元にシミュレーション条件を決定した.

軸受型式	アンギュラ玉軸受7000C: タイプS用軸受として 選定された型式 内径10 [mm], 外径26 [mm], 幅8 [mm]
保持器材質	綿ベースフェノール (質量, ヤング率などを模擬)
保持器案内方式	内輪案内
	5000 [rpm]:ホイール最高回転速度
潤滑油温度(粘度)	40 [℃](0.096 [Pa·s]):代表的な軸受動作温度 (宇宙用潤滑油として主流の合成炭化水素油 Multiply Alkylated Cyclopentaneの粘度)
保持器接触部における粗さ突起 支持部の摩擦係数	0.15:摩擦試験により決定
重力(軸姿勢)	1 [G](水平軸):無重力よりもリテーナインスタビ リティーが起こりやすい条件
シミュレーション時間	6 [s](内輪500回転相当)

3. 品質工学の適用 ★重要なポイント P-ダイアグラム 軸受特性は非線形性が強く、設計パラ メータ、ノイズ、出力を決定するまでに 【ノイズ】 非常に多くの予備シミュレーションを実 施した. 油膜厚さのばらつき 本研究では速度、温度一定とする. 【出力】 【入力】 •回転速度 [rpm] 保持器並進速度 ホイール用軸受 •潤滑油温度 [℃] [m/s] など ↑保持器安定性を評 価する上で適してい A 予圧量 [N] る. B 案内すきま [mm] C ポケット軸方向すきま [mm] 実際には制御が困難 D ポケット周方向すきま [mm] なパラメータ(特に 出力は軸受動特性シ E 案内面油膜厚さ [µm] E~H) でも, 出力 ミュレーションによ F ポケット油膜厚さ [µm] 特性に与える影響を G 案内面表面粗さ[um] り計算する. 調べるため設計パラ H ポケット表面粗さ [μm] メータとして設定し 【設計パラメータ】 た.

12

3. 品質工学の適用

設計パラメータとノイズの水準

_						
設計パラメータ				水準	★重要なポイント	
		1	2	3	軸受特性は非縁形性が 強く、各パラメータの水	
	A 予圧量		小	大		準を決定するまでに非常 に多くの予備シミュレー
B 案内すきま		小	中	大	ションを実施した. また, す法等の製造公差も考	
	C ポケット軸方向すきま		小	中	大	慮し, 現実的な範囲で水 準を選んだ.
D ポケット周方向すきま		小	中	大		
	E 案内面油膜厚さ		小	中	大	
	F ポケット油膜厚さ		小	中	大	
	G 案内面表面粗さ		小	中	大	
	Η ポケット表面粗さ		小	中	大	制御できない因子であ
						る油膜厚さをノイズとし
	ノイズ	N1	N2	N3	N4	てロバストさを評価した.

ノイズ	N1	N2	N3	N4
E 案内面油膜厚さ	0.9	0.9	1.1	1.1
F ポケット油膜厚さ	0.9	1.1	0.9	1.1

13

3. 品質工学の適用

直交表L₁₈への割付

L18_2x3^7	予圧	案内すきま	ポケット 軸方向すきま	ポケット 周方向すきま	案内面 油膜厚さ	ポケット 油膜厚さ	案内面 表面粗さ	ポケット 表面粗さ
1	小	<u>ال</u>	<u>ا/</u>	<u>ال</u>	<u>ال</u>	小	<u>ال</u>	<u>ال</u>
2	小	小	中	中	中	中	中	中
3	小	/ <u>\</u> \	大	大	大	大	大	大
4	小	中	/]\	小	中	中	大	大
5	小	中	中	中	大	大	小	/]\
6	小	中	大	大	١	小	中	中
7	小	大	/]\	中	/]\	大	中	大
8	小	大	中	大	中	小	大	/]\
9	小	大	大	/]\	大	中	小	中
10	大	小	/]\	大	大	中	中	/]\
11	大	小	中	小	/]\	大	大	中
12	大	小	大	中	中	小	小	大
13	大	中	/]\	中	大	/]\	大	中
14	大	中	中	大	/]\	中	小	大
15	大	中	大	小	中	大	中	/]\
16	大	大	/]\	大	中	大	小	中
17	大	大	中	/]\	大	小	中	大
18	大	大	大	中	/]\	中	大	/]\
直交表(18通り)×ノイズ(4通り)の計算結果から, SN比と感度を 計算

【望目特性】

SN比:
$$\eta = 10\log \frac{1/n(S_m - V_e)}{V_e}$$

感度: $S = 10\log \frac{1}{n}(S_m - V_e)$
Sm: データ平均の変動
Ve: 誤差分散

SN比:高いほどノイズに強い設計(ロバスト)

SN比が高いほど、油膜厚さがばらついても保持器並進速度 は変動しにくい。

感度:出力の平均に相当

感度が低いほど,保持器並進速度は小さくなり,保持器運動 に起因するトルク変動も小さくなる.

```
15
```

4. シミュレーション結果

保持器並進速度

72回のシミュレーションを行い、保持器中心の並進速度(時間平均)を計算

- 10番:保持器並進速度が大(リテーナインスタビリティー)
- 15番:ばらつきが大(SN比が小)

- SN比を大きく変化させるパラメータは、ポケット油膜厚さとポケット表面粗さである.
- SN比を高くするためには,<u>案内すきま大,ポケットすきま小</u>が望ましい.

17

- 感度を大きく変化させるパラメータは、予圧量、ポケット油膜厚さ、ポケット表面粗さである。
- 基本的に、SN比を高く設計すれば感度も小さくなる.

4. シミュレーション結果

再現性の確認(1/2)

品質工学では得られた最適条件が信頼できるかどうか確認のための計算を行う. SN比の最適条件と比較条件の差(利得)が推定結果と確認計算結果で一致するかどうか確認する.

			条	全件約	目合┤	Ł			推定	結果	確認計	算結果
	Α	В	С	D	Е	F	G	Н	SN比	感度	確認	推定
最適条件	1	3	1	1	3	1	1	3	49.85	-39.78	36.47	-32.54
最悪条件	2	1	3	3	2	3	2	1	2.90	-23.81	-0.66	-20.64
利得							•		46.95	-15.97	37.13	-11.90
									1			1

SN比の最適条件と最悪条件の利得

- SN比については推定結果と確認計算結果の差がやや大きい (9.8dB)が,大きな利得が得られている。
- ・ 感度についても同様に、推定結果と確認計算結果の差がやや 大きいが傾向は合っている。

19

4. シミュレーション結果

再現性の確認(2/2)

5. 軸受回転試験による検証 供試体

シミュレーション結果を元に設計した保 持器の安定性を調べるために, 軸受を 試作し, 回転試験を実施した.

供試体:

- アンギュラ玉軸受7000C
- 宇宙用として主流の合成炭化水素油で潤滑
- 2種類の保持器(タイプA, B)を試作

要因効果図から得られたSN比

試作した軸受

タイプA:

ポケット周方向すきまが水準1より もわずかに**小さい**

タイプB:

ポケット周方向すきまが水準3より もわずかに大きい

タイプAの方がSN比は大きいと推定

21

5. 軸受回転試験による検証 試験装置

- 測定項目:軸受の摩擦トルク(回転時の抵抗), 軸受温度
- 試験雰囲気:

①大気圧力(10⁵ Pa, GN₂雰囲気),室温(22 ℃)
 ②大気圧力(10⁵ Pa, GN₂雰囲気),低温(-4 ℃)
 ③真空圧力(10 Pa以下),室温(22 ℃)

低温や真空はリテーナインス タビリティーが起こりやすい 環境であり、軸受特性のロバ ストさを評価するのに適して いる.

5. 軸受回転試験による検証 試験結果(1/3) 大気圧力・室温

• 大気圧力(10⁵ Pa, GN₂雰囲気), 室温(22 ℃)

• 回転速度1000~4000rpm@10min, 5000rpm@24h

保持器タイプA(SN比 大)

保持器タイプA:摩擦トルクやや変動あるが, 概ね安定 保持器タイプB:トルクスパイク(瞬間的なトルク上昇)が2回発生

SN比が高いタイプAの方が良好な摩擦トルク特性

23

5. 軸受回転試験による検証 試験結果(2/3) 大気圧力・低温

- 大気圧力(10⁵ Pa, GN₂雰囲気), 低温(-4 °C)
- 回転速度1000~4000rpm@10min, 5000rpm@24h

保持器タイプA:摩擦トルクやや変動あるが、概ね安定 保持器タイプB:摩擦トルクやや変動あるが、概ね安定

タイプA, Bどちらも良好な摩擦トルク特性

保持器タイプB(SN比 小)

保持器タイプB:摩擦トルク・軸受温度の上昇, 異音の発生 ⇒リテーナインスタビリティーの発生

SN比が高いタイプAの方が良好な摩擦トルク特性

6. まとめ・教訓

- ホイール・タイプS用軸受の保持器設計に、品質工学におけるパラメータ設計の手法と軸受動特性シミュレーションを組み合わせた設計手法を利用した。
- SN比が高くなるように設計した保持器は、シミュレーション・試験のどちらにおいてもリテーナインスタビリティーが発生しない、良好な軸受特性を示した、 本シミュレーション結果や開発試験結果を元に、ホイール・タイプS用軸受の 保持器寸法を決定した。
- シミュレーション手法(物理モデル)の作り込みと合わせて、試験によるモデルの検証を行い、シミュレーションの限界(定性的/定量的に何ができるか?)を事前に評価し把握しておくことが重要である、本研究では、"リテーナインスタビリティー発生条件の予測"にシミュレーションを利用したが、これだけで保持器を設計できるのではなく、過去に得られた様々な知見や試験結果と合わせた検討・評価が必要であった。
- シミュレーションの特性(非線形性の度合い)を知っておかないと、品質工学のパラメータ・水準選びに多大な時間を要することが分かった。また、パラメータ・水準選びは寸法公差等の製造条件も考慮して行うことが重要である。

25

3.3 シミュレーションによる効果的な吸収体配置レイアウトの最適化

3.3.1 目的

本項では、EMC シールドルーム内において生じている低周波数帯域の定在波について、定在波を 抑制しかつ使用する電波吸収体の数量を低減することを目的に、シミュレーションと品質工学を組 み合わせた検討事例について紹介する。

3.3.2 実施内容

(1) ステップ1:目的機能の定義

EMC シールドルームを利用する顧客の要望から目的とする機能を考えると、背景も踏まえた上で本事例においては「ある低周波数領域において定在波が存在しない(若しくは許容できる)」とした。

ここで、上記の機能は顧客やその背景で如何様にでも変わることに注意されたい。例えば、電磁 波が室外に漏洩をしないことを顧客が要求するのであれば、目的機能は「如何なる周波数の電磁波 であっても室外に漏洩しない。」となる。

(2) ステップ2:基本機能及び理想機能の明確化

【基本機能】

基本機能及び理想機能の明確化にあたり「定在波が存在しない」とは、どのような状態かについ て考えると、定在波とは波の重なりであり、反射源としては主に床面、壁面及び天井面となる。よ って、壁面等における反射率(若しくは減衰率)について評価することも手段の1つとして挙げら れたが、「反射率及び減衰率がどうであろうと最終的には試験を実施する空間で定在波が存在してい なければ良い」とした。ここで、定在波が存在していないことを定量的に評価するために、床を除 く壁面及び天井面すべてに吸収体を設置した場合(以下、「理想環境」)における試験空間の音圧を 基準(以下、「理想状態」)とした。

電波吸収体の数量を低減した場合にも空間の特性は理想状態と近しいことが望ましい。したがって、基本機能とは「信号を変化させた場合における理想状態との関係性」と定義した。

【理想機能】

上記で定義した基本機能より、標準的な使用条件にて期待される働きとは「理想状態における入 出力関係と一致すること」と定義した。ここで、理想機能は**y** = β**M**という線形式で与えられるが入 出力関係は非線形であるので、標準 SN 比を用いて線形的な関係に変換した。なお、入出力関係が 一致するとは、β=1となるはたらきのことを指す。

(3) ステップ3:因子と水準の抽出

因子と水準の抽出にあたっては先ずは取得される値がどのような物理現象に基づいているかを考 える必要がある。本事例はシミュレーションであるので、シミュレートされた値がどのようなアル ゴリズムによって出力されているかを調査した。この時、入力値や設定値については説明変数とし て抽出し横一列に並べた。次に、これまでに定義した目的機能、基本機能及び理想機能を基に説明 変数を制御因子、設計因子、誤差因子、標示因子及び出力に分類し、エンジニアード・システム図 を作成した。

(4) ステップ4:実験の割り付け

識別した各因子より制御因子はL₁₈、誤差因子はL₉の直交表を適用した。この時、L₁₈直交表については、壁面に貼付する吸収体の面積をより評価する(水準を増やす)ために、通常は(2¹×3⁷)の 水準であるところを直交表の第1列と第2列を統合し(6¹×3⁶)の水準として割り付けた。

(5) ステップ5:実験とデータ収集

実験によるデータ収集時には能率を優先して行うことが重要である。よって、シミュレーション モデル作成時においては、簡易的なモデルとなるよう心掛けた。

(6) ステップ6:解析

解析においては分散分析表(ANOVA: ANalysis Of VAriance)を活用した。ANOVA とは、有効 成分(信号)と有害成分(ノイズ)に分解されたデータを表に示したものである。なお、誤差因子 として Q:領域(3次元方向)を設定していたが、結果への影響が微小であったため、誤差因子の直 交表を用いた結果を平均して ANOVA の各値を算出した。(この教訓として、実験を行う前に誤差因 子が出力にどの程度の影響を及ぼすか確認することが望ましい。)そして、作成した ANOVA を基に 要因効果図を作成した。

(7) ステップ7:最適条件(選定条件)の選択と工程平均の推定

要因効果図を基に最適条件を選択する。本事例においては、SN 比が最も高くなる水準は側面及び

天井面ともに吸収体貼付面積が100%である場合である。しかし、本事例の背景を踏まえると100% を条件として選定することは好ましくない。よって、最適条件の選択にあたっては、ある程度貼付 面積が少ない水準を選択した。このように選定した条件は最適条件ではないので、以下、選定条件 と呼ぶ。また、現行条件としては、吸収体を全面に貼付したものとした。工程平均の推定について の詳細は他の文献を参考とされたい。

(8) ステップ8:確認実験

選定条件について推定した利得が再現するかを確認した。結果として、SN 比が高いものを選定した場合(選定条件)には、利得の差が 3dB 程度であるので再現性があると判断できる。なお、仮に 再現しない場合には、要因を変えるのではなく、SN 比の設定(二乗和の分解)を見直す必要がある。 再現性がないということは、加法性がなく SN 比を用いて機能を改善することができないからである。

3.3.3 まとめ

- 品質工学を適用することで、シミュレーションに割く時間を大幅に短縮することができかつ貼 付するレイアウトや貼付場所に関する効果を定量的に示すことができた。
- 本事例は標準 SN 比を用いて評価したが、誤差因子の影響が少なかったため、本来ならば実施 するはずの「目標特性への合わせこみ」を実施していないことに注意されたい。
- ・ 誤差因子として室内寸法の変化は効果がなかったが、壁面に貼付する吸収体の吸収特性は、不 変ではなく温度や製造公差により若干の特性の変化が存在すると考えられる。
- また、本事例ではシミュレーションを実施するにあたり解析ソフトを用いたが設定可能な因子 が少なくかつ手動で因子の水準を変更させており、多大な時間を要した。シミュレーションを 実施するソフトによっては、自動で因子の水準を変化させることも可能であり、その場合は大 規模な直交表を使用することも可能であるので、今後はそういったことも考慮して品質工学を 適用していきたい。

シミュレーションによる 効果的な吸収体配置レイアウトの最適化

経緯

- ➢ EMC試験設備(図1)はシールドルームと電波吸収体で構成されており、電磁シー ルドルーム床を除く5面に電波吸収体を設置し、試験中における電磁波の不要な反 射や散乱を抑制し試験空間を確保している。
- ▶ しかしながら使用している電波吸収体の性能外となる低い周波数帯域(500MHz以下)では吸収性能がないため、試験空間の確保が難しい現状にある。
- ▶ 低周波数帯域における吸収性能を持つフェライトタイルと呼ばれる電波吸収体(図 2)により、試験空間を確保することが可能であるが、その重量から壁面に貼付した場合には設備が耐えられない危険性がある。
- ▶ よって、設備の耐えられる重量に抑え且つ試験空間を確保可能であるように貼付す る必要がある。
- ▶ 反射原理においては、電磁波と音波が等価であることを前提とした場合に、音響解 析ソフトにて完全反射環境と理想環境(無響室)における定在波の様子を図3に示 す.

電波吸収体

図1 EMC試験設備

ロバスト設計HDBK

【性能(例)】 ・サイズ[mm]:100×100×6.7 ・重量[g]:330 ※設備の一つの面(10×8.8)に貼付 する場合、約3ton近くの重量となる。

図2 フェライトタイル

2

解析・評価フロー

ロバスト設計HDBK

品質工学を用いて検討するにあたり大まかなフローを下図の通り示す.

図5 基本機能 概念図

周波数[Hz]

ιlim

4

信号M

図6 基本機能 概念図

機能定義(ステップ1,2,3) キーワード:目的機能、基本機能、理想機能、因子、水準、エンジニアード・システム図

<u>ステップ3:因子と水準の抽出</u>

システムは境界要素法(BEM)を用いており、関連する説明変数を洗い出し因子設定を行った.

図7 境界要素法(BEM)概念図

(1)**Γ**:境界 制御因子

境界条件に関わる設定は境界の特性(反射or吸収)が考えられる(室形も含まれるが(2)Ω:領域で説明する). その特性として音響インピーダンスに着目した.尚,音響インピーダンスZは下記の式より求められる. こ

 $Z = \rho c_0 \times \frac{1+R}{1-R}$ $R = \sqrt{1-\alpha}$

ρ:空気の密度(1.21[kg/m³])
 R:反射率
 α:吸音率

この他に吸収体貼付面積及びレイアウトが考えられる.

(2)Ω:領域 誤差因子

縦L,横W及び高さHの三次元領域が考えられる.領域の変動によって波の反射環境も変動するため,誤 差因子として設定する.

(3)ω:角周波数 信号因子

解析周波数をfとしたとき、 $\omega = 2\pi f$ で表すことができ、本事例では周波数 fとして因子に設定した.

- (4) r_s: 音源の位置 制御因子
 領域Ω内における音源の位置.
- (5) $P_D(\mathbf{r}_S, \mathbf{r}_p, \omega)$: \mathbf{r}_S にある音源が \mathbf{r}_p に作り出す音圧 制御因子

点音源を想定する.

ロバスト設計HDBK

5

実験計画・実験(ステップ4,5) キーワード:入出力設定、因子設定、簡易モデル

ステップ4:実験の割り付け 制御因子はL₁₈、誤差因子はL₉の直交表を適用した。

【制御因子】

	因子名	単位	水準1	水準2	水準3	水準4	水準5	水準6
AB	側面貼付面積(全面貼り付けに対する比率)	%	100	95	90	85	80	75
С	上面貼付面積(全面貼り付けに対する比率)	%	100	90	80			
D	側面貼り方(レイアウト)	_	中心から	外側から	格子状			
E	上面貼り方(レイアウト)	-	中心から	外側から	格子状			
F	吸音材種類(吸音性能)	-	吸収体A	吸収体B	吸収体B(ダミー)			
G	音源位置	-	1.1	1.15	1.2			
Н	音圧	dB	60	80	100			

通常は水準が3つであるが、直 交表の第1列と第2列を統合するこ とで水準を増やしている。

______ 統合化された直交表の列 【L₁₈直交表】 ✓

	12	3	4	5	6	7	8	12	3	4	5	6	7	8
中 E P N L a	AB	С	D	E	F	G	Н	AB	С	D	E	F	G	Н
天映IN0.								側面貼付面積(全面貼り	上面貼付面積(全面貼	側面貼り方	上面貼り方		立:(5/+ 22)	ж. г .
								付けに対する比率)	り付けに対する比率)	(レイアウト)	(レイアウト)	败百গ催艰(败百汪肥)	百凉位直	百庄
1	1	1	1	1	1	1	1	100	100	中心から	中心から	吸収体A	1.1	60
2	1	2	2	2	2	2	2	100	90	外側から	外側から	吸収体B	1.15	80
3	1	3	3	3	3	3	3	100	80	格子状	格子状	吸収体B(ダミー)	1.2	100
4	2	1	1	2	2	3	3	95	100	中心から	外側から	吸収体B	1.2	100
5	2	2	2	3	3	1	1	95	90	外側から	格子状	吸収体B(ダミー)	1.1	60
6	2	3	3	1	1	2	2	95	80	格子状	中心から	吸収体A	1.15	80
7	3	1	2	1	3	2	3	90	100	外側から	中心から	吸収体B(ダミー)	1.15	100
8	3	2	3	2	1	3	1	90	90	格子状	外側から	吸収体A	1.2	60
9	3	3	1	3	2	1	2	90	80	中心から	格子状	吸収体B	1.1	80
10	4	1	3	3	2	2	1	85	100	格子状	格子状	吸収体B	1.15	60
11	4	2	1	1	3	3	2	85	90	中心から	中心から	吸収体B(ダミー)	1.2	80
12	4	3	2	2	1	1	3	85	80	外側から	外側から	吸収体A	1.1	100
13	5	1	2	3	1	3	2	80	100	外側から	格子状	吸収体A	1.2	80
14	5	2	3	1	2	1	3	80	90	格子状	中心から	吸収体B	1.1	100
15	5	3	1	2	3	2	1	80	80	中心から	外側から	吸収体B(ダミー)	1.15	60
16	6	1	3	2	3	1	2	75	100	格子状	外側から	吸収体B(ダミー)	1.1	80
17	6	2	1	3	1	2	3	75	90	中心から	格子状	吸収体A	1.15	100
18	6	3	2	1	2	3	1	75	80	外側から	中心から	吸収体B	1.2	60

実験計画・実験(ステップ4,5) キーワード:入出力設定, 因子設定、簡易モデル

ステップ4:実験の割り付け 制御因子はL₁₈、誤差因子はL₉の直交表を適用した。

【誤差因子】

	因子名	単位	水準1	水準2	水準3
Ν	None	-	N/A	N/A	N/A
0	室形(縦)	m	10.019	10.044	10.069
Ρ	室形(横)	m	10.019	10.044	10.069
Q	室形(高さ)	m	8.833	8.858	8.881

【Lg直交表】

実験No	1	2	3	4	1	2	3	4
	Ν	0	Ρ	Q	N	0	Ρ	Q
					None	室形(縦)	室形(横)	室形(高さ)
1	1	1	1	1	N/A	10.019	10.019	8.833
2	1	2	2	2	N/A	10.044	10.044	8.858
3	1	3	3	3	N/A	10.069	10.069	8.881
4	2	1	2	3	N/A	10.019	10.044	8.881
5	2	2	3	1	N/A	10.044	10.069	8.833
6	2	3	1	2	N/A	10.069	10.019	8.858
7	3	1	3	2	N/A	10.019	10.069	8.858
8	3	2	1	3	N/A	10.044	10.019	8.881
9	3	3	2	1	N/A	10.069	10.044	8.833

吸収体の厚みを考慮して、既存 の屋内有効空間の±2.5cmを水準 に設定した。

ロバスト設計HDBK

ロバスト設計HDBK

7

<u>ステップ5:実験とデータ収集</u>

モデルは能率を優先して行ったため、グラウンドプレーン(供試体を設置するテーブル)、アンテナ架台及び供試体等といったものを設定してお らず、既存のEMCシールドルームを精密に再現したものではないことに注意されたい。下図に作成したモデルの一例を示す。

図9 シミュレーションモデル群 (一部)

また、データ収集の為に設定した評価点については右図の通り である。実試験においては下図に示すテーブル上に供試体を設置 することが多いため、まずはテーブル上の空間を評価対象とし、 評価点としてテーブル上に30点を設定した。

機能性評価 (ステップ6) キーワード: ANOVA, SN比, 感度, 要因効果図

図11に直交実験の一部の結果について示す。 <u>実験No.1 (理想環境)</u> <u>実験No.12</u> 側面:85% 外側から 上面:80% 外側から 側面:100% 上面:100% 83 82 81 80 79 78 B (ref = 2e-05 Pa) -74 · 73 · 72 · 71 · 69 · 68 · 40 45 50 55 60 65 70 75 80 85 90 95 100 36 <u>実験No.6</u> (参考) 完全反射環境 側面:95% 格子状 側面:0% 上面:0% 上面:80% 中心から (ref = 2e-05 Pa) 59 58 57 55 60 65 78 75 80 85 90 95 100 48 -7 10 15 40 45 1

図11 出力結果

▶ 各実験No.によって結果が大きく異なることが分かり、実験No.6は傾向としては,実験No.1(理想状態)とほとんど変わらない.

▶ 実験No.12は定在波を抑制できているものの,実験No.6と比較すると抑制効果が薄い.

ロバスト設計HDBK

ANOVAとは分散分析(Analysis Of Variance)の略称であり、有効成分(信号)と有害成分(ノイズ)に分解されたデータを表に示したもの である。下記にANOVAと分解の概念図を示す。尚、誤差因子としてΩ:領域(3次元方向)を設定したが、結果への影響が微小であったため、 誤差因子の直交表を用いた結果を平均してANOVAの各値を算出した。

Source	f	S	V	備考
β	f_{β}	Sβ	_	全データを考慮した際の回帰直線の傾き.感度.
$P imes \beta$	$f_{P \times \beta}$	$S_{P imes \beta}$	$V_{P imes eta}$	センサ間の位置によるβの変動.
е	f _e	S _e	Ve	回帰直線上のデータのばらつき.
(N)	$f_{(N)}$	S _(N)	<i>V</i> (<i>N</i>)	「センサ間の位置による β の変動」と「データのばらつき」の和. 何かしらのパラメータを誤差因子として解析する場合に使用する. $S_{(N)} = S_e + S_{P imes eta}$
Т	f_T	S _T	_	全データの二乗和.

機能性評価 (ステップ6) キーワード: ANOVA, SN比, 感度, 要因効果図

ANOVAにおける各値の考え方と導出式について下記に示す。

Source Tについて

全データの二乗和をSrとする。評価点: Pは30か所に設定し、解析する周波数: Mは5~100Hzとしたため、下記の式よりSrは算出される。尚、 各出力yは前述の通り誤差因子に関する直交表で振った結果で平均している。

図13 横軸に信号因子M,縦軸に出力yをとった場合の非線形グラフイメージ

 $[S_T]$

$$S_T = \{(y_1^{P1})^2 + (y_2^{P1})^2 + \dots + (y_{96}^{P1})^2\} + \{(y_1^{P2})^2 + (y_2^{P2})^2 + \dots + (y_{96}^{P2})^2\} + \dots + \{(y_1^{P30})^2 + (y_2^{P30})^2 + \dots + (y_{96}^{P30})^2\} = \sum_{i=1}^{30} \sum_{i=1}^{96} (y_i^{Pi})^2$$

→各実験結果で出力されるため割愛する。本事例においては、L₁₈の 直交表であるから18個の S_T が算出される。

全データ数は $30 \times 96 = 2880$ 個であるので、 $f_T = 2880$.

ロバスト設計HDBK

11

$$M_{96}$$
 $[f_T]$

Source βについて

標準SN比を算出する場合の S_{β} を求める。通常であれば信号因子(周波数):Mが横軸となるが、標準SN比を算出するため、横軸を理想状態における出力: Y_i^{Pj} とする。

13

ロバスト設計HDBK

機能性評価 (ステップ6) キーワード: ANOVA, SN比, 感度, 要因効果図

Source Bについて

$[S_{\beta}]$

前頁より、線形グラフに変換した後に通常のSN比の考え方を取り入れる。詳細な定義は他の文献を参考されたいが、 S_{β} は下記の式で定義される。 右図の様に線形グラフの数だけ線形式:Lと二乗和の入力:rが存在し、その比が S_{β} である。

$$S_{\beta} = \frac{\left(\sum_{j=1}^{m} L_{j}\right)^{2}}{\sum_{j=1}^{m} r_{j}} = \frac{\left(\sum_{j=1}^{30} L_{j}\right)^{2}}{\sum_{j=1}^{30} r_{j}}$$
$$L_{j} = \sum_{i=1}^{96} y_{i}^{Pj} Y_{i}^{Pj}$$
$$r_{j} = \sum_{i=1}^{96} (Y_{i}^{Pj})^{2}$$

 $[f_{\beta}]$

 S_{β} の式に二乗の項が1つであるので、 $f_{\beta} = 1$ 。

図16 標準SN比算出のために線形式に変換したグラフイメージ

Source $P \times \beta$ について

$[S_{P \times \beta}]$

取得した値におけるセンサ位置間による変動を考慮する。出力(比例式)の変動を $S_{P \times \beta}$ とし、 $S_{P \times \beta}$ はセンサ位置の違いによって、全データを考慮した回帰直線からどれだけ乖離したかを示すものであり、以下に定式化される。

$$S_{P \times \beta} = S_{P1 \times \beta} + S_{P2 \times \beta} + \dots + S_{Pm \times \beta}$$

$$= \frac{\sum_{j=1}^{m} L_{j}^{2}}{r} - S_{\beta}$$
$$= \frac{\sum_{j=1}^{30} L_{j}^{2}}{r} - S_{\beta}$$

 $[f_{P \times \beta}]$

 $S_{P \times \beta}$ には二乗の項がm = 30個あるので、

$$f_{P \times \beta} = m - f_{\beta} = 30 - 1 = 29$$

 $[V_{P \times \beta}]$

 $V_{P\times\beta} = \frac{S_{P\times\beta}}{f_{P\times\beta}}$

図17 センサの位置によって得られる出力が全データを考慮した回帰直線から乖離しているグラフイメージ (簡略化の為, $y_t^{P1} = \beta_t Y_t^{P1}$ のグラフのみ記載)

15

ロバスト設計HDBK

機能性評価 (ステップ6) キーワード: ANOVA, SN比, 感度, 要因効果図

Source eについて

Source eは回帰直線上からのデータのばらつきであったが、全データの二乗和は図12のように分解しているため、次の式から求めることが可能である。

<u>Source (N)について</u>

Source (N)は全ての有害成分 (ノイズ) の二乗和であり、図12のようにSource $S_{P\times \beta}$ とeの合計である。

 $\begin{bmatrix} S_{(N)} \end{bmatrix} & \begin{bmatrix} f_e \end{bmatrix} & \begin{bmatrix} V_e \end{bmatrix} \\ S_{(N)} = S_e + S_{P \times \beta} & f_{(N)} = f_e + f_{P \times \beta} & V_{(N)} = \frac{S_{(N)}}{f_{(N)}}$

機能性評価 (ステップ6) キーワード:ANOVA、SN比、感度、要因効果図

標準SN比について

SN比: η とは有効エネルギーと有害エネルギーの比のことである。その比は常用対数で取るものとし、SN比が大きいほどノイズ(内乱及び外乱)に強いということを意味する。有効成分である二乗和は $S_{m{eta}}$ であるが、真に有効な成分ではなく誤差: $V_{m{e}}$ が含まれていると考えられるため、そ の分の影響を引き真に有効な成分を推定する。また、有害成分は $V_{(M)}$ であり、SN比: η は下記の通り定式化される。

感度について

この場合の感度:βとは回帰直線の傾きを示す。標準SN比の計算を行うために横軸に理想状態における出力を適用しているため、感度が1に近い ほど理想状態に近いと考えることができる。

$$\beta = 10 \log \frac{\sum_{j=1}^{30} L_j}{\sum_{j=1}^{30} r_j}$$

17

ロバスト設計HDBK

機能性評価 (ステップ6) キーワード:ANOVA、SN比、感度、要因効果図

参考までに作成したANOVAと標準SN及び、傾きについて下記に示す。

3.176E-01 3.176E-01 29 1.169E-07 4.030E-09 2850 6.380F-05 2.239F-08 2879 6.392E-05 2.220E-08 3.081E-03 1.000 ANOVA (実験No.2)

図18 作成したANOVA

ANOVA	C18_E01-09	有効除数 r =	3.179E-03
source	f	S	V
β	1	3.064E-03	3.064E-03
P×β	29	2.446E-07	8.436E-09
е	2850	1.629E-05	5.716E-09
(N)	2879	1.653E-05	5.743E-09
Т	2880	3.081E-03	
標準SN比	η	57.27	(db)
傾き	β	0.982	

ANOVA (実験No.18)

ロバスト設計HDBK

ステップ7:最適条件(選定条件)の選択と工程平均の推定

要因効果図を基に最適条件(選定条件)を設定する。

図20 要因効果図と選定条件

- 誤差因子は出力に大きな影響を与えていなかったため、傾きは1.0近辺の値をとりそのバラツキは0.05未満である。従って、傾きについては参考程 \triangleright 度として標準SN比の値に着目して条件を選定した。
- 側面貼付面積割合のSN比が示す傾向は、面積割合が下がるほど減少しているので妥当であると判断できる。
- 上面貼付面積割合の傾向については、V字カーブ(谷形の傾向)となっている。軽量化のため80%の条件を先ずは選定した。 側面レイアウト及び上面レイアウトについては、標準SN比の傾向から側面は「格子状」、上面は「中心から」を選定した。
- 吸音材については吸収体Aの方が吸収体Bよりもやや標準SN比が良いものの、入手性の観点から吸収体Bを選定した. \geq
- 音源高さは1.1の場合が標準SN比が高いため、条件として選定した。 \triangleright
- ▶ 音圧については、水準に応じて出力レベルが1/10や10倍となりSN比に関係ないことが判明した。よって、先ずは80dBを条件として選定した。19

確認実験(ステップ7.8) キーワード:最適条件(選定条件)、工程平均の推定、確認実験、再現性

ステップ7:最適条件(選定条件)の選択と工程平均の推定

前頁で推定された要因効果図を基に各因子と水準におけるSN比と傾きを推定した。

確認条件		- 1	因子	- E	水準	ŧ			推定		
	AB	С	D	E	F	G	Н	SN比	利得	傾き	利得
選定条件	2	3	3	1	2	1	2	72.32	-0.50	0.95	-0.06
全面貼付	1	1	1	1	1	1	1	72.81	基準	1.01	基準

ステップ8:確認実験

選定条件にて確認実験(シミュレーション)を行い、取得した標準SN比と傾きについて下記に示す。推定値と確認実験値の利 得の差が3db程度であるので、再現性があると判断できる。要因効果図では、上面貼付面積割合や上面貼付レイアウトに若干の 谷形傾向が確認されたが、再現性に大きな影響は表れていない。

確認条件	因子と水準		推定			Ĩ		R		再現	見性
	ABCDEFGH	SN比	利得	傾き	利得	SN比	利得	傾き	利得	SN比	傾き
選定条件	2 3 3 1 2 1 2	72.32	-0.50	0.95	-0.06	69.56	-3.26	1.0111	0.00	-2.76	0.06
全面貼付	1 1 1 1 1 1 1	72.81	基準	1.01	基準	72.81	基準	1.01	基準	基準	基準

ロバスト設計HDBK

まとめ

- ▶ EMCシールドルームに設置する吸収体の配置レイアウトの最適化について、標準SN比を用いて評価し貼付する レイアウトや貼付場所に関する効果を定量的に示した。
- ▶ 定在波は空間のサイズによって生じる周波数帯域が異なり且つ貼付する吸収体の厚みも一定ではない。よって、 誤差因子として室内の寸法を±2.5cm程度で変化させたが、出力に大きな影響はなかった。他の要因を誤差とし て設定することが望ましいことが確認された。誤差因子の候補としては、吸収体の周波数-吸収特性が挙げら れる。
- ▶ 要因効果図から一部の因子にはV字カーブ(谷形傾向)が確認されたが、再現性に大きな影響は与えておらず、 選定条件について再現性があることが確認された。

3.4 機構解析ツールによる Latch 設計

3.4.1 背景と目的

本報告では、機構解析ツールの Adams を利用し、Latch 製品の設計を対象とする。ここで取り上 げた Latch 製品とは、アポロ計画において、月着陸船を司令/機械船に固定するために使用された機 器である。計算機で使用したモデルは、機構解析ツールの Adams の入門用として利用されているも のであり、シンプルな構造に置き換えられているものである。

線形解析においては、多峰性を持つ設計解空間の中から、局所解をキャンセルしつつ大域的な最適 解を捜す必要がある。本研究では、非線形解析での最適解を算出するために、多水準直交表を利用 した点に工夫がある。

3.4.2 実施内容

(1) 品質工学としての位置づけ

今回の課題においては、ユーザが Latch のハンドルを持って挟むという1種類の動作モードだけ を想定していたため、品質工学における静特性と言われる手法で検討した。静特性は制御因子と誤 差因子の直積実験によって行われるため、シンプルで分かりやすい特徴がある。しかし、実際の製 品であれば、複数の動作モードを考える場合が多いため、静特性より動特性が使われる場合が多く なっている。

また本検討では、新しい試みとして品質工学の定義を利用してパラメータ成立範囲の算出を目的 として行っている。これは、一般的にはセットベースデザインと言われる手法であり、自動車業界 などで検討が進められている方法である。パラメータ成立範囲を算出するためには、多くの計算量 が必要となるため、応答曲面で平滑化する方法がとられるが、この方法の難点は、応答曲面は非線 形解析で利用すると解の精度が良くないという点である。そこで本検討では、応答曲面の様な近似 式を用いずに、多水準直交表を用いて実現している点が特徴である。

(2)品質工学の適用

制御因子としては、Latch モデルの取り付け位置とし、モデルが正常に動作できる範囲を設計探 索範囲とした。また誤差因子としては、Latch を動作させる際のバラつきや劣化を表現するものと してユーザの力と、モデルに付随するバネの力やバネ定数とした。目的関数は、発生する Latch 力 (800N 以上)、Latch 角度(0度であること)、ハンドル高さ(6cm 以下)の3つとして、それら3つを 満足させる多目的最適化問題とした。 パラメータの初期値は、設計者の思い込みを排除するために、設計者が決めるのではなく、シミ ュレーションモデルの動作可能範囲を採用し、結果を見ながら段階的に絞り込む方法としている。

(3)得られた結果

ユーザの力のバラつきや、バネの劣化等を考慮し、それらがどのような値を取ったとしても Latch 力、Latch角度、ハンドル高さの3つの制約を満足できるパラメータ成立範囲の算出を行っている。 このパラメータ成立範囲は実際に製造する場合の公差としての利用が可能であり、この範囲で製造 して置けば性能を保証できる指針として利用できる。

3.4.3 まとめ

本検討により、非線形解析に対するロバスト設計解の算出法を示す事が出来た。今後は機構解析 だけでなく、流体解析や制御解析などの非線形性が強い解析への適用を進め、有効性を検証してい きたい。

品質工学の良いところは、品質工学を理解しておけば、その製品の専門家でなくても最適解が得られる可能性が高まる点である。本検討においても、検討を進める中で Latch 製品の特長などが把握でき、設計のコツの様なものが把握できた点は収穫であった。

出展

角有司,谷中洋司,木内大地,青山和浩,他,"製品情報と運用情報の組み合わせ探索による設計 手法の研究(第5報:非線形解析における多目的ロバスト設計解の取得)",日本機械学会 第13 回最適化シンポジウム・2018.10.15-16

文献

- (1) 佐藤寛之, 石渕久生,"進化型多数目的最適化の現状と課題",日本オペレーションズリサーチ学 会誌, 2017年3月
- (2) 立川智章,渡辺毅,大山聖,"スーパーコンピュータ京を用いた大規模集団サイズでの多数目的 進化計算",進化型計算学会論文誌 Vo.6 No.3 2015
- (3) 石川晴雄、多目的最適化設計(セットベース設計手法による多目的満足化)、コロナ社(2010)」
- (4)小平剛央, 剱持寛正, 大山聖, 立川智章, "応答曲面法を用いた複数車種の同時最適化ベンチマ ーク問題の提案",進化型計算学会誌 Vol.8 No.1 2017

非線形解析への適用事例 (機構解析ツールによるLatch設計)

宇宙機の特長

様々なミッションを,厳しい環境で長期間(1年~5年以上)実施する必要がある. しかし,一度打ち上げると修理が出来ないため,高い信頼性が求められる.

Image from http://sec.gsfc.nasa.gov/sec_image_gallery.htm

機構解析とは

- 機構解析: Multibody Dynamics Analysis
- 複数の「剛体」や「弾性体」が、「ジョイント」や「ギヤ」等の位置を拘束する構造や、「バネ」や「ダンパー」や「ア クチュエーター」など力を伝達する機構により相互に接続されたモデルが対象。
- 機械として運動する様子を、運動方程式の形にモデル化し、その振る舞いを調べる運動力学の手法である。

難しい点:

- ① 各構造体の状態の組み合わせが膨大。網羅的な検証に労力がかかる。
- ② 各構造体の状態によっては、不安定な状態や実現不可能な状態となる。

JXA

今回の検討対象

Latch(ラッチ)設計問題

- ・ 機構解析ツールAdamsのチュートリアル用のサンプルモデル。
- 大型輸送コンテナの2つの部分を安全に固定するためのラッチモデル。
- このラッチは、アポロ計画において、月着陸船を司令/機械船に固定するために使 用された12のラッチの内の1つです。

AdamsのLatchモデルの定義

AXA

【製品】パラメータの定義

Getting Started Using Adams View (c) MSC Software

【運用】パラメータの定義

Getting Started Using Adams View (c) MSC Software

Getting Started Using Adams View (c) MSC Software

検討1: デフォルト値での検討

製品: P.8の範囲(Latchモデルのデフォルトの範囲) L50(5^11、2^1)直行表で割り付け

No.	パラメータ名(単位)	水準1	水準 2	水準3	水準4	水準 5
1	DV_1 (cm)	-1	-0.5	0	0.5	1
2	DV_2 (cm)	-1	-0.5	0	0.5	1
3	DV_3 (cm)	2.7	2.85	3	3.15	3.3
4	DV_P2_Y (cm)	1	2	3	4.5	6
5	DV_5 (cm)	1.8	1.9	2	2.1	2.2
6	DV_P3_Y (cm)	6.5	7.25	8	9	10
7	DV_4 (cm)	1	2	3	4	5
8	DV_6 (cm)	0	0.5	1	1.5	2
9	DV_9 (cm)	-6.6	-6.3	-6	-5.7	-5.4
10	DV_10 (cm)	4.5	4.75	5	5.25	5.5
11		0	0	0	0	0
12						

運用: HandleForce 75N~80N L50(5^11、2^1)直行表で割り付け

No.	パラメータ名(単位)	水準1	水準2	水準3	水準4	水準5
1	HandleForce (N)	75	76	77.5	79	80.0
2	SpringForce (N)	780	790	800	810	820
3	SpingPreload (cm)	-0.5	-0.25	0.0	0.25	0.5
4	SpringCoff ()	0.45	0.475	0.5	0.525	0.55
5						
6						
7						
8						
9						
10						
11						
12						

22

JXA

本システム(JIANT)による計算

24

LA KA

マップによる確認

マップによる確認

制約範囲を満たす【製品】【運用】ランキング

															-1			
																SPRING_	overcente	handle_h
		ラッチカ	ラッチ	ラッチ	p026	No. バラメータ名(単位)	水準1	水準2	水準3	水準4	水準5			No.	運用名	1_MEA_1	r_angle.Q	ook_dista
. 製品名	偏差値	11115	角度	高さ		1 DV_1(cm)	-1.0	-0.5	0.0	0.5	1.0					.Q_min	min	nce.Q_mi
		(N)	(度)	(cm)		2 DV_2(cm)	-1.0	-0.5	0.0	0.5	1.0						_	n
1 000	05.45	000.4	0.1	(((11))		3 DV_3 (cm)	2.7	2.85	3.0	3.15	3.3	\sim			1 o043	-295.5	19.9	8.6
1 puzo	65.45	-923.4	-0.1	3.9		4 DV_P2_Y (cm)	1.0	2.0	3.0	4.5	6.0				2 o042	-279.5	20.4	8.7
2 p002	64.11	-738.1	5.5	1.1		5 DV_5(cm)	1.8	1.9	2.0	2.1	2.2				3 o041	-279.6	20.4	8.7
3 p042	63.22	-707.8	2.2	1.9		6 DV_P3_Y (cm)	6.5	7.25	8.0	9.0	10.0				4 o022	-285.4	21.1	8.7
4 0046	62	-704.8	1	3		7 DV_4(cm)	1.0	2.0	3.0	4.0	5.0				5 o012	-276.8	21.1	8.7
5 0003	61	8 973-	4	3		8 DV_6 (cm)	0.0	0.5	1.0	1.5	2.0				6 0050	-283.8	21.1	8.9
6 0011	61.02	-609.0	5.4	27		9 DV_9(cm)	-6.6	-6.3	-6.0	-5.7	-5.4				7 0049	-283.3	21.2	8.9
7 0023	60.91	-567.7	11.8	2.0		10 DV_10(cm)	4.5	4.75	5.0	5.25	5.5				8 0048	-281.2	21.1	8.9
0 -014	50.15	205.7	0.0	2.5		11									0 -047	201.4	21.1	0.5
0 -047	50.10	-350.7	-0.2	0.0		12								-	9 0047	-201.4	21.1	0.9
9 0047	57.99	1303.9	10.0	2.9										1	0 0046	-279.5	21.0	8.9
11 -0.19	57.32	-300.7	10.9	1.5	p002	No. パラメータ名(単位)	水準1	水準2	水準3	水準4	水準5			1	1 0045	-279.6	21.0	8.9
12 -024	50.00	-310.1	0.7	3.9		1 DV_1 (cm)	-1.0	-0.5	0.0	0.5	1.0			1	2 o039	-282.8	21.2	8.9
2 0054	50.45	-234.3	3.5	3.4		2 DV_2(cm)	-1.0	-0.5	0.0	0.5	1.0			1	3 o040	-282.7	21.2	9.0
0000	55.82	-229.2	9.9	2.2		3 DV_3 (cm)	2.7	2.85	3.0	3.15	3.3			1	4 o029	-281.3	21.2	8.9
	54.62	-269.6	17.7	2.4		4 DV P2 Y(cm)	1.0	2.0	3.0	4.5	6.0			1	5 o030	-281.2	21.2	8.9
5 0001	54.58	-142.2	7.4	2.4		5 DV 5(cm)	1.8	1.9	2.0	2.1	2.2			1	6 o044	-277.0	21.0	8.9
6 p024	54.04	-117.9	2.7	3.5		6 DV P3 Y(cm)	6.5	7,25	8.0	9.0	10.0			1	7 o038	-280.1	21.2	8.9
L/ p028	53.53	-140.7	Z.1	4.5		7 DV_4(cm)	1.0	2.0	3.0	4.0	5.0			1	8 0037	-280.3	21.2	8.9
18 p039	53.32	-300.8	2.6	8.2		8 DV_6(cm)	0.0	0.5	1.0	1.5	2.0			1	9 0036	-278.2	21.1	8.9
.9 p013	53.24	-336.9	2.5	9.1	1	9 DV 9(cm)	-6.6	-6.3	-6.0	-5.7	-5.4				0 -025	270.4	21.1	0.5
20 p012	53.08	-159.5	1.2	6.3	1	10 DV 10(cm)	4.5	4.75	5.0	5.25	5.5			2	1 .024	-270.4	21.1	0.9
1 p032	52.83	-140.7	1.2	5.9	1	11								2	1 0034	-273.9	21.1	0.9
2 p041	52.62	-184.9	2.2	8.6		12								2	2 0028	-279.1	21.2	8.9
23 p017	52.49	-101.9	3.1	5.3										2	3 0019	-279.8	21.2	9.0
24 p029	52.33	-195.9	2.6	7.9	-042	N- パニオ カタ(単片)	-1/3年1	水准の	小准つ	北洋人	-1/ /# F	1		2	4 o027	-278.7	21.2	8.9
25 p050	52.1	-328.0	12.3	10.1	p042	No. ハリノーダ石(単位)	小平1	小牛乙	小平3	小华4	小华5			2	5 o020	-279.7	21.3	9.0
26 p035	51.78	-128.0	0.8	10.6	1	2 DV 2 (am)	-1.0	-0.5	0.0	0.5	1.0			2	6 o033	-275.3	21.1	8.9
27 p020	50.37	-447.7	21.9	14.1	1	2 DV 2 (cm)	2.7	2.05	2.0	2.15	2.2			2	7 o025	-276.1	21.1	8.9
8 p025	49.25	-68.6	3.5	11.9		4 DV P2 V (cm)	1.0	2.00	3.0	4.5	6.0			2	8 o032	-273.4	21.0	8.9
29 p027	48.75	-185.4	10.9	13.9	\	5 DV 5(cm)	1.8	1.9	2.0	2.1	2.2			2	9 o031	-273.6	21.0	8.9
30 p040	48.19	-387.8	37.1	11.9	•	6 DV P3 Y (cm)	6.5	7 25	8.0	9.0	10.0			3	0 o026	-276.0	21.2	8.9
31 p033	47.14	-311.0	38.6	10.9		7 DV 4(cm)	1.0	2.0	3.0	4.0	5.0			3	1 o018	-277.1	21.2	9.0
2 p019	46.88	-252.7	26.7	13.4		8 DV 6 (cm)	0.0	0.5	1.0	1.5	2.0			3	2 o017	-277.2	21.2	9.0
33 p010	46.79	-199.7	21.5	13.4		9 DV 9(cm)	-6.6	-6.3	-6.0	-5.7	-5.4			3	3 0024	-274.0	21.1	8.9
34 p018	46.7	-22.9	0.0	15.4		10 DV 10(cm)	4.5	4.75	5.0	5.25	5.5			3	4 0023	-274.2	21.1	8.9
35 p008	45.85	-460.0	54.1	13.5		11	1.0		0.0		2.0			2	5 0010	-278 1	21.2	9.0
36 p045	45.8	-288.7	44.7	15.2		12					1			2	0000	-270.1	21.3	0.0
17 p036	45.01	-20.5	35.3	16.0	【制只】	· · · ·					•			- 3	7 -015	-216.2	21.3	9.0
38 p015	43.21	-254.8	62.2	15.4	【衣印】									3	C1U0 1	-214.6	21.2	8.9
39 p044	40.74	-157.1	56.7	15.7	NIO 1/+白		TTHO	ואג כנ	1.54	$ch \pm 1$	吉士+	ニ白加い		3	8 0008	-276.0	21.3	9.0
40 p037	40.33	-145.2	59.2	15.7	NO.114R	X] (HOOK)]/],-	〒1-1-94	23.4IN	、 Ldl	เป็นปี	司Cて	してなり		3	9 0007	-276.4	21.3	9.0
1 p005	39.75	-117.4	57.7	15.8	エカハエ	+ たトクレル	- 台口 白口 / -	「不迷	ちち・	z				4	0 o021	-271.7	21.1	8.9
2 p004	39.61	-37.8	48.8	15.7	ていいて	す、 つす つて日	「月匕口」(こ	-11/両	יכטינו	a °				4	1 o016	-274.5	21.2	9.0
3 p031	39.28	-25.0	49.7	16.0										4	2 o013	-272.5	21.2	8.9
4 p049	38.89	-20.6	51.5	16.0				/	\leq					4	3 0006	-274.0	21.2	9.0
5 p009	38.83	-98.4	63.0	15.9				~ 1	<u> </u>	\sim				4	4 o014	-272.4	21.2	8.9
6 p022	38.6	-20.5	60.4	16.0			1) <u> </u>	-	`				4	5 o005	-273.5	21.3	9.0
7 p021	38.09	-20.6	61.0	16.0						P	X	5		4	6 o011	-270.0	21.1	8.9
48 p038	37.42	-43.7	73.2	16.0				V V	ĻΖ.	Y_				4	7 0004	-271.4	21.2	9.0
19 p043	37.35	-19.1	0.0	0.0							\sim			4	8 0003	-271 5	21.2	9.0
50 p016	36.03	-19.1	0.0	0.0			A		P		× –			4	0 0002	-269.4	21.2	9.0
							∕	•	•	∕			\sim	4	0 -001	-209.4 260 F	21.2	0.9
														1 0	0 10001	-209.0	21.2	8.9

多目的最適化の評価手法

	名称	パラメータ名	目標値	結果	
1	スプリングの反力(Latch力)	SPRING_1_MEA_1.Q	-800(N)以下	-704	(N)
2	Latch角	overcenter_angle.Q	0度でLatch完了	0	(度
3	HandleとHookの距離	handle_hook_distance.Q	0.92~6(cm)	2.4	(cm)
_					

参考) ランキング2、3位の結果

32

検討2: チャンピオンデータを中心に、±0.1cm

製品: ランキングNO.1を±0.1cmで振りなおし L50(5^11、2^1)直行表で割り付け

No.	パラメータ名(単位)	水準1	水準2	水準3	水準4 🚽	水準5
1	DV_1(cm)	-0.10	-0.05	0.0	0.05	0.10
2	DV_2(cm)	-0.10	-0.05	0.0	0.05	0.10
3	DV_3(cm)	3.20	3.25	3.30	3.35	3.40
4	DV_P2_Y(cm)	4.40	4.45	4.50	4.55	4.60
5	DV_5(cm)	2.00	2.03	2.05	2.08	2.10
6	DV_P3_Y(cm)	7.15	7.20	7.25	7.30	7.35
7	DV_4(cm)	1.90	1.93	1.95	1.98	2.00
8	DV_6(cm)	0.50	0.53	0.55	0.58	0.60
9	DV_9(cm)	-6.70	-6.65	-6.60	-6.55	-6.50
10	DV_10(cm)	5.15	5.20	5.25	5.30	5.35
11						
12						

No.	バラメータ名(単位)	水準1	水準2	水準3	水準4	水準5
1	DV_1(cm)	-1.0	-0.5	0.0	0.5	1.0
2	DV_2(cm)	-1.0	-0.5	0.0	0.5	1.0
3	DV_3(cm)	2.7	2.85	3.0	3.15	3.3
4	DV_P2_Y (am)	1.0	2.0	3.0	4.5	6.0
5	DV_5(cm)	1.8	1.9	2.0	2.1	2.2
6	DV_P3_Y(am)	6.5	7.25	8.0	9.0	10.0
7	DV_4(cm)	1.0	2.0	3.0	4.0	5.0
8	DV_6(cm)	0.0	0.5	1.0	1.5	2.0
9	DV_9(cm)	-6.6	-6.3	-6.0	-5.7	-5.4
10	DV_10(cm)	4.5	4.75	5.0	5.25	5.5

運用: HandleForce 75N~80N(前回と同じ) L50(5^11、2^1)直行表で割り付け

No.	パラメータ名(単位)	水準1	水準2	水準3	水準4	水準5
1	HandleForce (N)	75	76	77.5	79	80.0
2	SpringForce (N)	780	790	800	810	820
3	SpingPreload (cm)	-0.5	-0.25	0.0	0.25	0.5
4	SpringCoff ()	0.45	0.475	0.5	0.525	0.55
5						
6						
7						
8						
9						
10						
11						
12						

JXA

3D画面による確認

制約範囲を満たす【製品】【運用】ランキング

JAXA

3制約を満足する解の分布

要因効果図

	DV_1 (MR) SPRING_1_M1 0.4 A_10_mix 0.0 0.2 -0.10_005 8.00 0.05 6.0	DV_2 ([4:0]) DV_2 (DV_P2_Y (MR)	DV_5 (英品)	DV_P3_Y (製品)	DV_4 (¥/2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DV_6 (MR) 0.4 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.50 0.55	DV_9 (¥8) 04 02 02 04 -6.70-6.65-6.60-6.55-6.50	DV_10 (\$2.8) 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
 ①SPRING_1_MEA_1.Q スプリングの反カ(クランプ) -800N 以下 	DV_1 (200)	DV_2 (Hill) DV_2 (Hill) DV_2 (Hill) DV_3	DV, P2_V (Bill)	DV_5 (%R)	DV_F3_Y (MB) 520 540 540 540 540 540 540 540 54	DV_4 (MR) 540 560 500 500 500 1.50 1.95 2.00 2.05 2.10	DV_6 (MRR) 600 600 600 600 600 000 0.40 0.45 0.50 0.55	DV_9 (\$4.9.) 940 950 900 900 900 900 900 900 900 900 90	DV_10 (\$(\$;\$)) 920 940 940 940 940 940 940 940 940 940 94
②overcenter_angle.Q Latch角	DV_1 (\$23)	DV_2 (M/R) DV_3 (M/R)	DV_P2_V (MR)	DV_5 (%)	DV_P3_Y (MB) 51 49 40 7.15 7.20 7.25 7.30	DV_4 (MR) 50 49 1.90 1.95 2.00 2.05 2.10	DV_6 (M.R) 51 46 0.40 0.45 0.50 0.55	DV_9 (20.2) 51 49 48 -6.70 -6.65 -6.60 -6.55 -6.50	DV_10 (\$1,2)
	Overcenter_ angle Q_mm	DV_2 (MR) DV_3 (MR)	DV_P2_V (143)	DV_5 (&B)	DV_P3_V (MR)	DV_4 (\$4.8.) 20 15 05 05 05 05 05 05 05 05 05 0	DV_6 (M-R) 20 10 05 00 0.40 0.45 0.50 0.55	DV_9 (\$2.8) 20 15 00 -6.70-6.65-6.60-6.55-6.50	DV_10 (2012)
	DV_1 (MR) 100 X_max 104 100 100 100 100 100 000 000 000 00	DV_2 (MR) DV_3 (MR)	DV_P2_V (48.8)	DV_5 (\$8.9.) 1.08 1.04 1.02 1.00 1.90 1.95 2.00 2.05 2.1	DV_P3_Y (製品) 1.08 1.04 1.04 1.04 1.04 1.04 0 7.15 7.20 7.25 7.30	DV_4 (M/R) 1.06 1.04 1.02 1.00	DV_6 (MB) 100 100 100 100 0.40 0.45 0.50 0.55	DV_9 (\$8.8) 1.04 1.02	DV_10 (ARE) 100 104 104 104 104 104 104 104
	DV_1 (MR)	DV_2 (MR) DV_3 (MR)	DV_P2_V (MR)	DV_5 (\$48) 005 005 005 010 1.90 1.95 2.00 2.05 2.1	005 010 010	DV_4 (MR) CCS CCS CCS CCS CCS CCS CCS CC	DV_6 (M.B.)	DV_9 (\$2.8)	DV_10 (&LE)
	DV_1 (\$28)	DV_2 (MAR) DV_3 (MAR) 20 20 10 0 -010-0.05 0.00 0.05 0.10 30 10 10 -010-0.05 0.00 0.05 0.10 30 10 -010-0.05 0.00 0.05 0.10 -0.00 0.05 0.00 -0.00 0.00 0.05 0.00 -0.00 0.05 0.00 -0.00 0.00 0.05 0.00 -0.00 0.00 0.05 0.00 -0.00 0.05 0.00 -0.00 0.00 0.05 0.00 -0.00 0.00 0.05 0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	DV_P2_V (14/3)	DV_5 (30.8) 40 30 10 1.90 1.95 2.00 2.05 2.1	DV_P3_Y (MR) 40 20 10 0 7.15 7.20 7.25 7.30	DV_4 (MR) 40 10 10 100 195 200 205 210	DV_6 (MR) 40 30 10 0.40 0.45 0.50 0.55	DV_9 (20.8)	DV_10 (\$2(8)) 40 20 20 10 5.15 520 525 5.30
③ handle_hook_distance.Q HandleとHookの距離 0.82~6 (cm)	DV_1 (MR)	DV_2 (MR) DV_3 (MR)	DV_P2_V (MR)	DV_5 (\$83)	DV_P3_V (MR)	DV_4 (\$4.8) 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	DV_6 (MB)	DV_9 (\$(2.0)) 8 4 8 4 8 4 8 4 8 4 9 7 -6 70 -6 65 -6 60 -6 55 -6 50	DV_10 (&EE)
•	DV_1 (MR)	DV_2 (MAR) DV_3 (DV_P2_V (MR)	DV_5 (\$2.91)	DV_P3_Y (MR)	DV_4 (MR)	DV_6 (MR)	DV-9 (QLR)	DV_10 (34.8)
	hande hook distance 0 min e. tie oos e.co oos d	01/2 (HR) 01/3 (HR) 01/2 (HR) 01/3 (HR) 01/3 (HR) 01/2 (HR) 01/3 (HR) 01/3 (HR) 01/2 (HR) 01/3 (HR)	DV_F2_V (MR)	DV_5 (%B)	0 7.15 7.20 7.25 7.30	DV_4 (MR)	DV_E (MR)	DV-0 (QLD)	DV_T0 (368) 515 520 525 530 399

パラメータ範囲の選択

Latch角の判定(Overcenter_angle_Q)の最大値、最小値下げるパラメータを選択

overcenter_ angle.Q_max	DV_1 (255) 51 49 48 -0.10 -0.05 0.00 0.05 0.10	DV_2 (製品) 50 49 49 -0.10 -0.05 0.00 0.05 0.10	DV_3 (製品) 51 49 48 3.20 3.25 3	DV_F 51 50 49 48 3.30 3.35 3.40 4	P2_Y (製品)	DV_5 (製品) 51 49 48 1.90 1.95 2.0	DV_ 51 49 48 0 2.05 2.10	P3_Y (製品)	DV_4 (登品) 5 4 4 1.90 1.95 2.0	DV_6 (5 50 49 48 2.05 2.10 0.40	翻) 	DV_9 (製品) 51 49 48 -6.70 -6.65 -6.60 -6.55 -6.50	DV_10 (製品) 50 49 48 5.15 5.20 5.25 5.30
overcenter_ angle.Q_min	DV_1 (製品) 2.0 1.5 0.0 -0.10 -0.05 0.00 0.05 0.10	DV_2 (\$KB)	DV_3 (製品) 2.0 1.5 1.0 0.5 0.0 3.20 3.25 5	DV_1 2.5 1.0 0.0 3.30 3.35 3.40 4	P2_Y (製品)	DV_5 (製品) 2.0 1.5 0.5 0.0 1.90 1.95 2.0	DV. 20 1.5 10 0.5 0.0 0.5 0.0	P3_Y (製品)	DV 4 (製品) 21 11 11 0.0 1.90 1.95 2.0	DV_6 (5 2.05 2.10 0.40	新品) 0.45 0.50 0.55	DV_9 (第品) 2.0 1.5 0.0 -6.70 -6.65 -6.60 -6.55 -6.50	DV_10 (製品)
											NT 4	Frees	
No.	パラメータ	名(単位)	水準1	水準2	水準3	水準4	水準5			XMO	(22,0)		
1	DV_1(cm)		-0.10	-0.05	0.0	0.05	0.10					0.0000	
2	DV_2(cm)		-0.10	-0.05	0.0	0.05	0.10		н	landle force (80N)		Point3(DV 4 D	V 6 0)
	$DV_3(cm)$		3.20	3.20	3,30	3,00	3.40				Handle		0, 0)
	$DV_F2_T(cm)$		1 00	1.45	4.00	2.05	4.00						
6	DV P3 Y(cm)		7 15	7 20	7/5	7 30	7 3	5 83				point3(DV_5,	DV_P3_Y, 0)
	7 DV 4(cm)		1.90	1.20	2.00	2.95	2 10				POINT_ (-1.10.0		
,	BDV 6(cm)		0.40	0.45	0.50	0.55	0.60	0			our //	BONT_3	
ç	DV 9(cm)		-6.70	-6.65	-6.60	-6.55	-6.50	D				/ ₩	
10) DV_10(cm)		5.15	5.20	5.25	5.30	5.35	5		Hook	00INT_9		
11									Spring K = 800 N/cm.	(Length = 1cm)	Construction of the second	POINT P	
12	2							00	A A A A A A A A	Spring Force			
	マのバ	°=v k	フィント	FI - 7%	2 回日	の た ま	+を宇	 [上]:按示		, 0	POINT	1 Pivot (Width = 1cm, Radius = 1cm)	
		ヘノメーク	7 単じに	чСv	고미日	しノイ火計	して天	:기민o 🛛 🗠	3 Adams Vie	w によるラッチモラ	テル		

JAKA Explore to Re

検討3:

要因効果図で、感度の高いパラメータの絞込み

【製品】【運用】パラメータの定義

No.	パラメータ名(単位)	水準1	水準2	水準3	水準4	水準5
1	DV_1(cm)	-0.10	-0.05	0.0	0.05	0.10
2	DV_2(cm)	-0.10	-0.05	0.0	0.05	0.10
3	DV_3(cm)	3.20	3.25	3.30	3.35	3.40
4	DV_P2_Y(cm)	4.40	4.45	4.50	4.55	4.60
5	DV_5(cm)	2.00	2.025	2.05	2.075	2.10
6	DV_P3_Y(cm)	7.15	7.20	7.25	7.30	7.35
7	DV_4(cm)	1.90	1.925	1.95	1.975	2.00
8	DV_6(cm)	0.50	0.525	0.55	0.575	0.60
9	DV_9(cm)	-6.70	-6.65	-6.60	-6.55	-6.50
10	DV_10(cm)	5.15	5.20	5.25	5.30	5.35
11						
12						

運用: HandleForce 75N~80N(前回と同じ) L50(5^11、2^1)直行表で割り付け

No.	パラメータ名(単位)	水準1	水準 2	水準3	水準4	水準 5
1	HandleForce (N)	75	76	77.5	79	80.0
2	SpringForce (N)	780	790	800	810	820
3	SpingPreload (cm)	-0.5	-0.25	0.0	0.25	0.5
4	SpringCoff ()	0.45	0.475	0.5	0.525	0.55
5						
6						
7						
8						
9						
10						
11						
12						

42

J∦**X**A

ほぼ満足する解が得られた。

	名称	パラメータ名	目標値	Max	Ave	Min		
1	スプリングの反力(Latch力)	SPRING_1_MEA_1.Q	-800(N)以下	-792.55	-915.95	-1046.34	(N)	
2	Latch角	overcenter_angle.Q	0度でLatch完了	-0.00003	-0.147	-0.654	(度)	
3	HandleとHookの距離	handle_hook_distance.Q	0.92~6(cm)	3.04	2.24	1.5	(cm)	43

最終結果:要因効果図

SPRING_1 A_1.Q_ma	0V_1 (248)	DV_2 (\$88)	DV_3 (\$40) 04 02 04 02 04 02 04 02 04 02 04 02 04 02 04 02 04 04 02 04 04 02 04 04 02 04 04 04 04 04 04 04 04 04 04 04 04 04	DV_P2_Y (\$40)	DV_5 (\$82) C4 C2 C2 C2 C4 C2 C2 C2 C4 C2 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C2 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DV_P3_V (348)	DV_4 (\$68)	DV_6 (\$40)	DV_5 (\$22)	DV_10 (\$48)	HandleForce (18/8)	SpringForce (38/8) 04 02 02 04 780 790 800 810 820	SpingPrecad (30%) 04 02 04 04 02 04 04 02 00 02 04 04 04 04 04 04 04 04 04 04	SpringCott (36/R)	0.4 0.2 -0.2 -0.4
SPRING_1 A_1.0_mm	DV_1 (848)	DV_2 (322)	500 500 500 500 500 500 500 500 500 500	DV_P2_Y (362)	DV_5 (142) 000 000 000 000 000 000 000 0	DV_P3_Y (848)	DV_4 (BUR) 900 940 900 15015021541561562.00	DV_6 (1822)	DV_9 (\$62) 900 900 470 465 460 455 450	DV_10 (BAB)	HandeForce (18/R) 900 900 950 75 76 77 76 79 80	SpringForce (###) 900 940 940 780 790 800 810 820	SpingPrecad (#F6) 500 540 660 -04-02 00 02 04	SpringColf (#FF) 900 940 900 000 0460-480-500.520-54	-900 -500 -940 -960
overcenter angle Q_m	0V_1 (\$28) 880 875 870 400 405 000 005 010	DV_2 (202) 10.5 17.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 10.0	074_3 (2020) 80.5 81.5 81.0 17.5 87.0 12.0 12.5 3.00 3.15 3.42	0V_P2_Y (220)	DV_5 (320) 10.5 17.5 17.0 200202204206208210	DV_P3_Y (\$40) \$15 \$175 \$170 7.15 7.20 7.25 7.30	DV_4 (2012) 10.0 17.5 17.0 15.0 1521541561592.00	DV_6 (200) 815 810 815 810 815 810 815 815 815 815 815 815 815 815 815 815	DV_9 (202)	EV_10 (\$480) 44.5 44.0 17.5 17.0 5.15 5.20 5.25 5.30	HandleForce (18/8) 18.0 17.5 17.0 75 70 77 78 79 80	SpringForce (38%) 18.0 17.5 17.0 780 750 800 810 820	SpingPrecad (30%) 81.5 11.0 17.5 17.5 17.0 	SpringCott (38/9) 10.0 17.5 17.0 0.460.480.5D0.520.54	48.5 48.0 47.5 47.0
overcenter angle Q_m	DV_1 (BLB) 140 150 150 4 0 0.05 0.00 0.05 0.10	DV_2 (388)	0V_3 (342) 145 150 150 150 150 150 150 150 15	DV_P2_Y (382) 145 155 155 440 445 450 455	DV_5 (349) 145 155 2002 02 704 200 2 012 10	DV_P3_V (MR)	DV_4 (\$63) 545 555 150 1501521541561562.00	DV_6 (382)	DV_9 (\$42)	DV_10 (\$48)	HandleiForce (18/11) 140 145 150 150 75 70 77 78 79 80	SpringForce (JBR) 143 150 150 783 750 800 810 820	EpropPretoad (WHF) 140 145 150 150 04 - 02 00 62 0.4	SpringCott (第月) 140 150 150 0.460.480.500.570.54	-0.140 -0.145 -0.150 -0.155
hook_XFO X_max	DV_1 (\$60) 100 100 100 100 100 100 100 100 100 1	DV_2 (202)	DV_3 (340) 100 100 100 100 100 100 100 1	DV_P2_Y (382)	DV_5 (1402) 1.02	DV_P3_V (848)	DV_4 (\$68)	DV_6 (\$40) 100 100 100 100 100 100 100 100 100 1	DV_9 (\$62)	DV_10 (\$48) 102 298 299 5.15 5.20 5.25 5.30	Handlefforce (36/8) 1.02 2.00 2.00 75 70 77 78 79 80	SpringForce (38%) 1.02 1.03 1.03 1.04 1.05	SprigPretad (##0 100 500 500 64-02 00 62 04	SpringCott (第月) 1.02 1.00 1.00 1.00 1.00 0.06 0.46 0.48 0.50 0.52 0.54	1.02 1.00 0.98 0.96
hook_XFO X_min	BN 000 BN 000 CTO 4.05 100 0.05 0.10	DV_2 (388)	0V_3 (840) 000 000 000 000 000 000 000 000 000	DV_P2_Y (388)	DV_5 (348)	DV_P3_V (348)	DV_4 (\$48)	DV_6 (342)	DV_6 (\$KB)	DV_10 (848)	HandleForce (36/E)	SpringForce (36%)	SpingPretoad (38/R)	SpringCott (2017) 010 005 010 010 010 010 010 010 010 010	0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000
FUNCTION A_1.Q_me		DV_2 (889)	DV_3 (889) 0 10 10 10 10 120 125 330 315 340	DV_P2_Y (382)	DV_5 (322) 40 20 10 2002 (02 204 206 2 08 2 10	DV_P3_V (MR)	DV_4 (\$63)	DV_6 (342)	DV_9 (869)	EV_10 (\$48)	Handeforce (18/H)	SpringForce (編用) 40 10 780 750 800 810 820	SpingPretoad (WR) 40 10 10 04 02 00 02 04	SpringCott (#(H))	40 30 20 10 0
FUNCTION A_1.0_min		DV_2 (342)	DV_3 (342)	DV_P2_Y (348)	DV_5 (142)	DV_P3_V (348)	DV_4 (\$42)	DV_6 (349)	DV_9 (\$23)	DV_10 (\$40)	HandleForce (38/8)	SpringForce (IRW)	SpingPreiced (#/R)	SpringCott (2016)	5557654
handle_ho _distance (_max	DV_1 (848)	DV_2 (1843)	DV_3 (\$82)	DV_P2_Y (362)	DV_5 (882)	DV_P3_V (148)	DV_4 (\$63)	DV_6 (342)	DV_9 (\$42)	DV_10 (\$48)	Handeforce (18/R)	SpringForce (編年)	EpingPhotoad (##R)	BpringCott (IB/R)	8282200
handle_ho _dstance (_min		DV_2 (MR)	DV_3 (M22)	DV_P2_Y (889)	DV_5 (MP)	DV_P3_Y (348)	DV_4 (368)		DV_9 (862)	DV_10 (848)	HandleForce (IB(R)	SpringForce (IBR)	SpingPretoad (#/H)	SpragCott (26/F)	NOOPONT

検討結果(まとめ)

1回の計算は(L50xL50=2500の組み合わせ)約4時間(夜中に計算)。 作業期間は約1週間。

朱子	【結果】 製品パラメータ	タを以	下の	数値の	の範囲	目にし	ておけば
No.	パラメータ名(単位)	水準1	水準2	水準3	水準4	水準5	
1	DV_1 (cm)	-0.1	-0.05	0.0	0.05	0.1	
2	DV_2(cm)	-0.1	-0.05	0.0	0.05	0.1	
3	DV_3(cm)	3.2	3.25	3.3	3.35	3.4	
4	DV_P2_Y(cm)	4.4	4.45	4.5	4.55	4.6	
5	DV_5(cm)	2	2.025	2.05	2.075	2.1	
6	DV_P3_Y(cm)	7.15	7.2	7.25	7.3	7.35	
7	DV_4(cm)	1.9	1.925	1.95	1.975	2	
8	DV_6(cm)	0.5	0.525	0.55	0.575	0.6	
9	DV_9(cm)	-6.7	-6.65	-6.6	-6.55	-6.5	
10	DV_10(cm)	5.15	5.2	5.25	5.3	5.35	(亦子は最週個

運用パラメータが、以下の範囲を動いても

No.	パラメータ名(単位)	水準1	水準2	水準3	水準4	水準5
1	HandleForce(N)	75.0	76.0	77.5	79.0	80
2	SpringForce(N)	780.0	790.0	800.0	810.0	820.0
3	SpingPreload(cm)	-0.5	-0.25	0	0.25	0.5
4	SpringCoff()	0.45	0.475	0.5	0.525	0.58

以下の結果が得られる。

					和未		
	名称	パラメータ名	目標値	Max	Ave	Min	
1	スプリングの反力(Latch力)	SPRING_1_MEA_1.Q	-800(N)以下	-792.55	-915.95	-1046.34	(N)
2	Latch角	overcenter_angle.Q	0度でLatch完了	-0.00003	-0.147	-0.654	(度)
3	HandleとHookの距離	handle_hook_distance.Q	0.92~6(cm)	3.04	2.24	1.5	(cm)

(最適値の結果: ①スプリング反力) 1019(N), ②Latch角全て0以下. ③HandleとHookの距離全て2.0cm以下.

まとめ

- ① 多水準直交表の繰り返し計算により,非線形解析への適用と計算精度・解精度の向上.
- ② 偏差値による総合評価法により,多目的最適化への対応.
- ③ パラメータ範囲と感度情報によるロバスト設計解の提示を可能とした.

 今後の課題: さらに、様々な宇宙機設計への適用による検証を進めたい. 表計算ソフトウェアなどによる簡易な解析、流体解析などの非線形解析、等

3.5 自動車のユーザ評価(定性・定量)データへの適用

3.5.1 背景·目的

近年、AI 技術の発展とその産業応用の拡大により、多くのデータセットが公開され利用されている。 それらのデータは、定量的なものから定性的なもの、さらには両者の組み合わせに至るまで様々である。 セットベース設計手法は定量データを扱うことを前提としているものの、定性データも扱うことができ れば、同手法のさらなる適用範囲の拡大が期待できる。本項では、定性データと定量データを扱う選好度 セットベース設計手法 (PSD 手法)を、(定性・定量データを含む)米国の自動車の各種仕様とユーザ評 価に関するデータに対して適用した結果を紹介する。なお、本内容の詳細は、文献⁽¹⁾を参照されたい。

3.5.2 定性・定量データを扱う PSD 手法の概要

定性・定量データを扱う PSD 手法(以下、定性・定量 PSD 手法)は、ラフ集合理論⁽²⁻⁴⁾ を応用したものである。

ラフ集合理論は、対応のあるデータセット(複数の対象とそれらが有する特徴の組み合わせのデータセット)を、予測したいデータ項目(決定属性)とその予測に用いるデータ項目(条件属性)に分類し、決定属性値の集合に対応する条件属性値の集合の組み合わせ(決定ルール)を導出することで、データセットが包含するデータ項目間の傾向を可視化することができる。ラフ集合理論では、条件属性及び決定属性を、(数値でない)定性的な語句にすることはもとより、定量的な数値又は数値範囲(上限値と下限値)にすることもできる。このため、得られる決定ルールは、(quality = high, medium) → (evaluation = hight)のような定性的なルールも、(price ≥ 15000) → (evaluation = medium)のような定量的なルールもある。ここで、矢印の前後は条件属性と決定属性のそれぞれの集合を表しており、決定ルールにおける条件部と結論部と呼ばれる。すなわち、前者のルールは、「quality という条件属性の値が high 又は medium の時に、evaluation という決定属性の値が high になる」ことを表し、後者のルールは、「price という条件属性の値が 15000 以上の時に、evaluation という決定属性項目が mediumになる」ことを表している。以下に、ラフ集合を用いた定性・定量 PSD 手法の各種パラメータの定義について述べる。

PSD 手法は、設計変数の選好度分布と目的関数から算出される可能性分布と要求性能分布の積集合(図 1 左における 2 つの分布の重なり部分)の大きさや傾きなどを用いて、設計変数の選好度分布を定める。 この 2 つの分布を用いた評価を行うために、定性・定量 PSD 手法における設計変数、性能及び 2 つの分 布は、以下のように定義されている。

1) 設計変数と性能は、(ラフ集合理論における)条件属性と決定属性として定義されている。ここで、 決定属性は、(2 つの分布における選好度を設定する必要があるため)製品に関するユーザ評価や 販売台数などのような、優劣のある属性値を含むデータ項目である必要がある。優劣のある決定属 性値は、一部のラフ集合理論に基づく手法^(2,3)と同様に、優位な(評価の高い)順番を表す重要度 *j*=1,2,...の順番に並び替えられ、クラスCl_jと呼ばれる。例えば、決定属性をユーザの好みの評価と すると「Cl₁:好き、Cl₂:やや好き、Cl₃:どちらでもない、Cl₄:やや嫌い、Cl₅:嫌い」のように表 される。なお、重要度はPSD 手法における選好度に対応するため、決定属性値Cl_jは、Cl₁からCl_{n-1} が設計者の最も好む決定属性値から妥協できる決定属性値までを順に並べたものになるように、 Cl_n が設計者の好まない(設計者が妥協できない)決定属性値となるようにする。その際、データ ベースの製品評価に基づいて適宜属性値を統合し、上述したn個になるようにする。例えば、先の 例で、設計者が妥協できない評価が、「やや嫌い」と「嫌い」である場合、決定属性値は、「 Cl_1 :好 き、 Cl_2 :やや好き、 Cl_3 :どちらでもない、 Cl_4 ':やや嫌い/嫌い」のようにする。

2) 2 つの分布の縦軸である選好度は決定属性値として、横軸である性能は対象の集合(図1右)としてそれぞれ定義されている。ここで、分布の横軸に対応する対象の集合は、可能性分布では決定ルールの結論部に従う対象の集合、要求性能分布では決定ルールに従う対象の集合である。先に述べた決定属性値Cl_jに基づいて、要求性能分布における対象の集合は 1~j番目に重要なクラス群Cl⁵を含む対象群CLASS²、可能性分布における対象の集合はCl⁵を結論部とする決定ルールに従う対象群RULE_jと表す。なお、j番目のクラスではなく、そのクラス以上に重要なクラス群を用いる理由は、PSD 手法において、高い選好度の設計変数/目的関数の範囲は、低い選好度のそれに包含されるためである。

以下に、定性・定量 PSD 手法の評価指標について述べる。

図1 可能性分布と要求性能分布

PSD 手法は、設計における満足度と安定性に関する4つ評価指標を用いて、設計変数の選好度分布を定める。定性・定量 PSD 手法も同様の指標を用いるが、ここでは紙面の都合上 DPI と DAI の指標についてのみ、定性・定量 PSD 手法での算出方法を述べる。

1) DPIは、PSD 手法において、要求性能分布req(y)と可能性分布pos(y)からなる共通選好度分布

com(y) (= min(pos(y), req(y)))の面積(図2左)として定義される。共通選好度分布の面積は、大き

いほど可能性分布が設計者の要求を満たすことを意味する。すなわち、設計案(設計変数の範囲)が 好ましいことを意味する。一方、定性・定量 PSD 手法における DPI*は、決定属性値群Cl⁵を含む対象 群CLASS²(要求性能分布に対応)と、Cl⁵を結論部とする決定ルール候補に従う対象群RULE_j(可能 性分布に対応)の積集合(図 2 右)として次式のように定義される。

$$DPI^* = \sum_{j=1}^{n-1} |CLASS_j^{\geq} \cap RULE_j|$$

ここで、(1)式における重要度 *j*は、1,2, ..., *n*-1 であり、設計者の好まない重要度である *n*を除いて いる。これにより、同積集合に該当する対象数は多いほど、その決定ルールが(設計者が妥協できる) 決定属性のクラス群Cl_jを有する対象を多く包含することを意味する。つまり、本指標は、設計者が 妥協でき、かつ、対象数の多い決定ルールを高く評価する。

2) DAI は、PSD 手法において、可能性分布の pos(y)における選好度 0 の範囲として定義される(図 3 左)。この範囲は、範囲が狭いほど、設計変数の範囲に対する性能の範囲が小さいことを意味する。 すなわち、設計案(設計変数の範囲)がロバストである(性能に対する設計変数の感度が低い)こと を表す。一方、定性・定量 PSD 手法における DAI*は、 Cl_{n-1}^{2} を結論部とする決定ルール候補に従う対 象の数 $|RULE_{n-1}|$ を全対象数 $CLASS_{n}^{2}$ で除した確率を 1 から引いたものとして次式のように定義され る。
(2)

$DAI^* = 1 - \frac{|RULE_{n-1}|}{CLASS_n^{\geq}}$

この確率は、決定ルールが決定属性のクラス群Cl²_{n-1}を有する対象を少なく包含することを意味する。 つまり、本指標は、設計者が妥協でき、かつ、対象数の少ない決定ルールを高く評価する。

PSD 手法は、複数の評価指標を正規化するとともに、それらの指標の重みを用いて幾何平均したものを 目標として、遺伝的アルゴリズムや粒子群最適化法などのヒューリスティクスを用いて設計変数の範囲 を探索する。定性・定量 PSD 手法も同様に、次式を目標として、PSO で決定ルールを探索する。なお、式 は、前述した 2 指標で表しているが、PSD 手法には他の指標もあるため、それらを加えることも可能であ る⁽⁵⁾。

$$\{(NDPI^*)^{\omega_{\rm P}} \times (NDAI^*)^{\omega_{\rm A}}\}^{\frac{1}{\omega_{\rm P}+\omega_{\rm A}}} \quad \left(NDPI^* = \frac{DPI^*}{DPI^*_{\rm max}}, NDAI^* = \frac{DAI^*}{DAI^*_{\rm min}}\right)$$

ここで、*ω_P,ω_A*は、両指標の重みであり、大きくなるほどその指標を優先することとなる。上式の目標が 最大になるような決定ルールを、粒子群最適化法により探索する。

3.5.3 事例適用

本事例では、米国自動車マーケットプラットフォーム Cars. com におけるホンダ車の評価データ⁽⁶⁾を 事例に用いた。同データにおける consumer rating を決定属性Dとし、決定属性値を、4.5 以上を very good Cl_1 、4.0 以上を good Cl_2 、3.5 以上を acceptable Cl_3 、3.5 未満を bad Cl_2 のように設定した。Consumer rating 以外のデータを条件属性とし、属性値を表 1 のように設定した。これらの条件属性値に対応する 決定属性の属性値のデータ数を表 2 に示す。

	Madal	C	Miniva	n S	edan	SUT	SU	V	Other		
	Model	51	v_{11}	1	v ₁₂	v_{13}	v_{14}	ł	v_{15}		
	Condition	<i>C</i> ₂	1	New		Certified		Used			
	Collection			v ₂₁		v_{22}		v ₂₃			
	Color	<i>C</i> ₃	Black	Blue	N Bule	Red	Silver	White	Other		
Conditional			v_{31}	v_{32}	v_{33}	v_{34}	v_{35}	v_{36}	v_{37}		
attribute	Drivetnein C		AWD			FWD		RW	D		
	Drivetralli	υ4	v_{41}			v_{42}		<i>v</i> ₄₃			
	Evol Tureo	C	Gasoline				H	v ₄₃ Hybrid			
	ruei Type	C_5	v_{51}				v_{52}				
	Price	С ₆		0		~		9999	19		
	MPG	<i>C</i> ₇		0		~		50			
Decision attribute D		very g	ood	good	a	cceptable	1	bad			
		D	Cl ₁ Cl ₂		Cl_2		Cl ₃	Cl ₃ C			

表1 条件属性と決定属性

		Cl_{I}	Cl_2	Cl ₃	Cl₄	total
	V 11	50	142	59	12	263
	v ₁₂	272	541	194	99	1106
C_1	v 13	33	99	23	11	166
	V 14	382	899	253	164	1698
	V 15	4	27	6	4	41
	v ₂₁	379	558	137	127	1201
C_2	v 22	50	148	29	30	257
	V 23	312	1002	369	133	1816
	v 31	133	319	109	67	628
	v 32	56	105	34	16	211
	v 33	19	48	22	14	103
C_3	V 34	45	123	38	18	224
	v ₃₅	245	610	172	95	1122
	V 36	226	459	139	71	895
	V 37	17	44	21	9	91
	V41	330	754	220	143	1447
C4	v ₄₂	411	946	314	146	1817
	v 43	0	8	1	1	10
C	V 51	656	1584	478	252	2970
0.5	v 52	85	124	57	38	304

表2 条件属性値と決定属性値における対象数

本事例では、PS0 における粒子数を 1000 個、更新回数を 100 として決定ルールを導出した。なお、3 式 における指標の重み (ω_P , ω_A)の組み合わせは、(1,0)、(0.75,0.25)、(0.5,0.5)、(0.25,0.75)、(0,1)の5パターンとした。両指標の値について付置した散布図を図4に示す。同図より、2指標の重みに応 じて、決定ルールのパレート最適解が導出されていることが確認できる。さらに、導出された決定ルール を表 3 に示すとともに、各決定ルールの考察を述べる。

- DPIのみを評価する(1,0)の条件で導出された決定ルールのすべての結論部で、全対象を包含するためにすべての条件属性値が含まれている。これは、DPIが、選好度に関わらず決定ルールに従う対象数の多さのみを評価する指標であるためだと考えられる。一方で、DAIのみを評価する(0,1)の条件で導出された決定ルールのすべての結論部で、1つのデータを指定するために、対象数の少ないv₅₁やv₄₃などの属性値が含まれている。これは、DAIが、選好度に関わらず決定ルールに従う対象数の少なさのみを評価する指標であるためであると考えられる。以上のことから、両指標は、単体ではなく他の指標と組み合わせて用いる必要があることがわかる。
- DPIと DAI の重みが均等な(0.5, 0.5)では、(0, 1)よりデータ数が多い、かつ(1, 0)の条件より も対象数が少ないv₁₂ やv₄₂などを含む決定ルール、すなわち両指標の特徴を有する決定ルールが 導出されている。同様に、DPI の重みが大きい(0.75, 0.25)の条件と DAI の重みが大きい(0.25, 0.75)の条件により導出された決定ルールは、両指標の特徴を持ちつつ、それぞれ DPI と DAI の特 徴を多く含んでいる。
- DPIの重みが大きい(0.75, 0.25)の条件で導出された決定ルールでは、v₁₄やv₃₆などのアメリカの 自動車市場において販売台数の多い車の仕様(モデルと色)(Cars.com, UEPA)に加えて、それら よりも販売台数のやや少ないv₃₁やv₄₁などの車の仕様(色や駆動など)も選出された。販売台数の 多さは(データセットにおける)対象数の多さに影響するため、対象数の多さを評価する DPI が

このような一般大衆に人気な仕様を選出したと考えられる。反対に、DAIの重みが大きいω₁₆やω₂₀ などの条件で導出された決定ルールでは、v₁₅やv₄₃などのアメリカの自動車市場において販売台数 の少ない車の仕様が選出された。なお、販売台数の少ない車は必ずしも人気がないとは限らず、高 級車やスポーツカーなどはもとより、ヴィンテージカーの人気は高い。このため、このように複数 の指標を組み合わせることで、設計者に意図にある仕様を導出できると考えられる。

図4 導出した決定ルールの散布図

2 指標の重み	導出された決定ルール
(ω_P, ω_A)	
(1, 0)	$(\operatorname{All} \to (u \in Cl_1^{\geq}))$
	$\operatorname{All} \to (u \in Cl_2^{\geq})$
	$(All \to (u \in Cl_3^{\geq}))$
(0.75, 0.25)	/ Black
	(Blue)
	$\left(C_{1} = \frac{Seuan}{SUW}\right) \land \left(C_{2} = Used\right) \land \left[C_{3} = \frac{NaVy Blue}{Silver}\right] \land \left(C_{4} = \frac{AWD}{FWD}\right) \land \left(C_{5} = Gasoline\right) \rightarrow \left(u \in Cl_{1}^{\geq}\right)$
	White
	Other
	/ Black
	(Minivan) (Blue
	$\begin{pmatrix} C_1 = Sedan \end{pmatrix} \land (C_2 = Used) \land \begin{pmatrix} C_3 = Navy Blue \\ C_3 = Control C$
	SUV / SUVER White
	Other
	(Minivan) (Certified) (AWD)
	$\begin{pmatrix} C_1 = Sedan \\ Output \end{pmatrix} \land \begin{pmatrix} C_2 = Output \\ Used \end{pmatrix} \land \begin{pmatrix} C_4 = FWD \\ FWD \end{pmatrix} \rightarrow (u \in Cl_3^2)$
(0.5, 0.5)	(Minivan) (Navy Blue)
(0.0, 0.0)	$\begin{pmatrix} C_1 = Sedan \end{pmatrix} \land \begin{pmatrix} C_2 = Certified \\ H_{2-1}d \end{pmatrix} \land \begin{pmatrix} C_3 = Silver \end{pmatrix} \land (C_4 = FWD) \land (C_5 = Hybrid) \rightarrow (u \in Cl_1^{\geq})$
	SUV SUV Used White
	(Minivan) (Blue
	$ \begin{pmatrix} C_1 = Sedan \\ SUT \end{pmatrix} \land \begin{pmatrix} C_2 = Certiflea \\ Hood \end{pmatrix} \land \begin{pmatrix} C_3 = Navy Bille \\ Silver \end{pmatrix} \land \begin{pmatrix} C_4 = AWD \\ FWD \end{pmatrix} \rightarrow (u \in Cl_2^{\geq}) $
	SUV SUV SUV
	$\langle Blue \rangle$
	(Minivan) Sedam) (Certified) (Navy Blue) (AWD)
	$ \left(\begin{array}{cc} C_1 = \begin{array}{c} Setut \\ SUT \end{array}\right) \land \left(\begin{array}{cc} C_2 = \begin{array}{c} COULFUCU \\ Used \end{array}\right) \land \left(\begin{array}{cc} C_3 = \begin{array}{c} Silver \\ Silver \end{array}\right) \land \left(\begin{array}{c} C_4 = \begin{array}{c} FWD \\ FWD \end{array}\right) \rightarrow (u \in Cl_3^2) $
	SUV) SUV White SUV
(0.25, 0.75)	(a Sedan) $(a Rlack)$ $(a Rlack)$
(0.25, 0.75)	$(C_1 = \frac{SUU}{SUV}) \land (C_2 = New) \land (C_3 = \frac{SUUU}{White}) \rightarrow (u \in Cl_1^2)$
	(Sedan) (Black)
	$C_1 = SUV$ $\land (C_2 = New) \land (C_3 = White) \rightarrow (u \in Cl_2^2)$
	(Sedan) (Black)
	$\begin{pmatrix} C & SUT \end{pmatrix} \land (C & New) \land \begin{pmatrix} C & Red \end{pmatrix} \land (n \in Cl^{\geq})$
	$\begin{pmatrix} c_1 - SUV \end{pmatrix} \land (c_2 - New) \land \begin{pmatrix} c_3 - White \end{pmatrix} \lor (u \in c_1)$
(0, 1)	Other/ Other/
(0, 1)	$(C = O(h_{m}) + (C = Certified) + (C = Red) + (C = R(H)) + (C = C(R))$
	$(c_1 = Other) \land (c_2 = Used) \land (c_3 = Silver) \land (c_4 = RWD) \rightarrow (u \in Cl_1)$
	White /
	(Cartified) $($ Navy Blue
	$(C_1 = Other) \land \left(C_2 = \bigcup_{Used} \bigcup_{lsed} \bigwedge \left(C_3 = \bigcup_{Silver}^{Rea} \right) \land (C_4 = RWD) \to (u \in Cl_2^{\geq})$
	White
	/ Navy Blue
	$(C_1 = Other) \land \left(C_2 = \frac{Certified}{U_{n-1}}\right) \land \left(C_3 = \frac{Red}{C_{n-1}}\right) \land (C_4 = RWD) \rightarrow (u \in Cl_3^2)$
	Used / Silver / Silve
	vv ille '

表3 指標の重みと導出された決定ルールの例

<参考文献>

- Oyama, S. and Kato, T., Preference Set-based Design Method for Qualitative Assessments Using Dominancebased Rough Set Approach, Journal of Advanced Mechanical Design, Systems and Manufacturing, Accepted for Publication, 2025.
- (2) Stefanowski, J., On Rough Sets Based Approaches to Induction of Decision Rules, Rough sets in Knowledge Discovery, (1998).
- (3) Ko YC., Tzeng GH., A Dominance-Based Rough Set Approach of Mathematical Programming for Inducing National Competitiveness, Intelligent Decision Technologies10, (2011), pp. 23-36.
- (4) Greco, S, Matarazzo, B, Slowinski, R and Stefanowski, An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle, Rough-sets and Current Trends in Computing, (2005), pp. 304-313.
- (5) 石川晴雄,多目的最適化設計 セットベース設計手法による多目的満足化,コロナ社 (2010).
- (6)Omar,T.HondaCarsData,Kaggle(online),availablefrom<https://www.kaggle.com/datasets/omartorres25/honda-data>, (accessed on 16 September 2024).

選好度セットベース設計の事例 ~自動車のユーザ評価(定性・定量)データへの適用~

目次

1. 選好度セットベース設計手法の概要と定性評価

- 2. 定性評価のための選好度セットベース設計手法
- 3. 自動車のユーザ評価データへの適用

1. 設計の上流過程における定性データ評価の必要性

2. 定性評価のための選好度セットベース設計手法

2.0 評価指標提案のための定義

■クラスCl_Iは,設計者が好ましいと思う順番I(=1,2,...,n)にn段階で設定する. I = 1の時が設計者が最も好む設計(I = nの時が望まない設計)とする. なお,I = n - 1の時が設計者が最大限妥協した設計とする.

■PSD手法における2つの分布を以下のように定義する

- ・要求性能分布 $req(y) \rightarrow I$ 番目以下のクラス Cl_I^{\geq} を有する対象群 $CLASS_I^{\geq}$
- ・可能性分布 $pos(y) \rightarrow Cl_{I}^{\geq}$ を結論部とする決定ルール(候補)に従う対象群 $RULE_{I}$

2.0 評価指標提案のための定義

CLASS[≥]

CLASS_I[≥]は、次式のように表せる CLASS_I[≥] = $\sum_{i=1}^{I}$ CLASS_i

CLASS_{*i*(=1,2,...,*n*)}とRULE_{*j*(=1,2,...,*n*-1)}の2つの対 象群用いて, PSD手法の指標を検討する.

CLASS₁

CLASS₂

•••

CLASS_n

 $RULE_{n-1}$

2. 定性評価のための選好度セットベース設計手法

2.1 提案指標1: DPI*

PSD手法では,要求性能分布req(y)と可能性分布 pos(y)からなる共通選好度分布 com(y) $(= \min(pos(y), req(y)))$ の面積として定義される. 共通面積が大きいほど,設計案が好ましいことを表す.

※指標の詳細については、石川著『多目的最適化設計』をご参照されたい.

2.1 提案指標1: DPI*

ラフ集合理論では、望まない設計であるI = nの場合を除いたn - 1番目までのRULE_Iと CLASS²の積集合の和をDPI*と定義できる.

$$DPI^* = \sum_{I=1}^{n-1} |CLASS_I^{\geq} \cap RULE_I|$$

 CLASS² :/番目以下のクラスCl²を有 する対象群
 RULE_I : Cl²を結論部とする決定 ルール(候補)に従う対象群
 ↓ : 対象群に含まれる対象数

	CLASS ₁	CLASS ₂	CLASS ₃
RULE ₁	18	21	2
RULE ₂	22	48	8

 $DPI^* = 18 + (22 + 48) = 88$

2. 定性評価のための選好度セットベース設計手法

2.2 提案指標2: DCI*

PSD手法では,最大値で正規化した要求性能分布req(y)と可能性分布pos(y)の積として定 義される.なお,要求性能分布の選好度が0.5以上となる部分を正,0.5未満となる部分を負と することで,要求性能分布の選好度が高い(低い)領域において両分布が重なるほど,設計 案が好ましい(好ましくない)ことを表す.

2.2 提案指標2: DCI*

ラフ集合理論では、DPIで用いたRULE_jとCLASS_iの積集合の個数と、(設計者の好ましさを 表すクラスの番号)*jとi*により算出した RULEとCLASSの重要度の線形和をDCI*と定義できる.

重要度は、以下の2つの係数の積としている.

①決定ルールの重要度を表すjが1の時に1となり、jが大きくなるほど0に近づく係数 ②決定ルールを満たす時($i \leq j$ の時)に1、満たさない時(i > jの時)に負の値となり、 $i \geq j$ の差が大きくなるほど絶対値が大きくなる係数.

$$DCI^* = \sum_{j=1}^{n-1} \sum_{i=1}^{n} |CLASS_i \cap RULE_j| \times \left(1 - \frac{j-1}{n-1}\right) \times f(i,j)$$
$$\left(f(i,j) = \begin{cases} 1, & \text{if } i-j \le 0\\ -\frac{i-j}{n-1} & \text{if } i-j > 0 \end{cases}\right)$$

CLASS_i :i番目のクラスCl_iを有する対象群
 RULE_j :j番目のクラスCl_jを結論部とする決
 定ルール(候補)に従う対象群

2. 定性評価のための選好度セットベース設計手法

2.2 提案指標2: DCI*

$$\begin{aligned} \text{DCI}^* &= \sum_{j=1}^{n-1} \sum_{l=1}^{n} |\text{CLASS}_{i} \cap \text{RULE}_{j}| \times \left(1 - \frac{j-1}{n-1}\right) \times f(i,j) \\ & \left(f(i,j) = \begin{cases} 1, & \text{if } i-j \leq 0 \\ -\frac{i-j}{n-1} & \text{if } i-j > 0 \end{cases} \\ \begin{pmatrix} f(i,j) = \begin{cases} 1, & \text{if } i-j \leq 0 \\ -\frac{n-1}{n-1} & \text{if } i-j > 0 \end{cases} \\ & \text{CLASS}_{i} & \vdots i & \text{B} & \text{ID} & \text{D} & \text{D} \\ & \text{CLASS}_{i} & \vdots & \text{I} & \text{B} & \text{D} & \text{D} & \text{D} \\ & (& \text{O}) & \\ \hline & \text{CLASS}_{1} & & \text{CLASS}_{2} & \text{CLASS}_{2} & \text{CLASS}_{2} \\ & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{2} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{2} & & \text{CLASS}_{3} & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline & \text{CLASS}_{3} & & \text{CLASS}_{3} & \text{CLASS}_{3} \\ \hline &$$

2.3 提案指標3: DAI*

PSD手法では,可能性分布のpos(y)における選好度0の範囲として定義される. 範囲が狭ければ狭いほど,設計案が好ましい(設計変数の機能に対する感度が低くロバスト である)ことを表す.

2. 定性評価のための選好度セットベース設計手法

2.3 提案指標3: DAI*

ラフ集合理論では、(設計者が最大限妥協した設計にあたる)n-1番目のクラス Cl_{n-1} を結論部とする決定ルール(候補)に従う対象群 $RULE_{n-1}$ の対象数 $|RULE_{n-1}|$ をDAI*と定義した。

$$DAI^* = |RULE_{n-1}|$$

	CLASS ₁	CLASS ₂	CLASS ₃
RULE ₁	18	21	2
RULE ₂	22	48	8

 $DAI^* = 22 + 48 + 8 = 78$

2.4 提案指標4: DSI*

PSD手法では、共通選好度分布の優先度PR(com(y))と傾き $\Delta p(y)$ の積として定義される. なお、優先度は、共通選好度分布をm個のセグメント $y_k(k = 0,1, \cdots, m)$ に分割し、セグメント ごとの共通選好度が大きいほど大きくなるように定義される.

選好度の高い領域で選好度グラフの傾きが大きいほど、設計案が好ましいことを表す、

2. 定性評価のための選好度セットベース設計手法

2.4 提案指標4: DSI*

ラフ集合理論では、(共通選好度分布に相当する) RULE₁とCLASS[≥]の積集合の1に関する低 減率を1から引いたものと、1により算出した RULE₁の重要度の線型和をDSI*と定義できる.

$$DSI^* = \sum_{I=2}^{n-1} \left(\left(1 - \frac{|CLASS_{I-1}^{\geq} \cap RULE_{I-1}|}{|CLASS_{I}^{\geq} \cap RULE_{I}|} \right) \times \left(1 - \frac{I-2}{n-1} \right) \right)$$

RULE ₁の重要度

(例)

	CLASS ₁	CLASS ₂	CLASS ₃
RULE ₁	18	21	2
RULE ₂	22	48	8

$$DSI^* = \left(1 - \frac{18}{22 + 48}\right) \times 1$$
$$= 0.74$$

2.5 提案手法5: PRI*

PSD手法では、DPI,DCI,DAIおよびDSIを正規化し、それらの値について幾何平均を用いて 平均化することで定義される.

ラフ集合理論では、PSD手法と同様にPRI*を定義できる.なお、DPI*,DCI*,DAI*およびDSI*の 重みづけをそれぞれ ω_P , ω_C , ω_A , ω_S とした.

$$PRI^* = \{ (NDPI^*)^{\omega_P} \times (NDCI^*)^{\omega_C} \times (NDAI^*)^{\omega_A} \times (NDSI^*)^{\omega_S} \}^{\overline{\omega_P + \omega_C + \omega_A + \omega_S}}$$

$$NDPI^* = \frac{DPI^*}{DPI^*_{max}}, NDCI^* = \frac{DCI^* - DCI^*_{min}}{DCI^*_{max} - DCI^*_{min}}$$
$$NDAI^* = \frac{DAI^*_{min}}{DAI^*}, NDSI^* = \frac{DSI^*}{DSI^*_{max}}$$

4.1 使用データ

米国自動車マーケットプラットフォームCars.comにおけるH社製の車の評価データ*)を事例に 用いた.重みの組み合わせは27パターンに設定した.

	Model		Miniva	n S	Sedan	SUT	SU	V	Other
		\mathcal{C}_1	v_{11}		<i>v</i> ₁₂	v_{13}	v_{14}	1	v_{15}
	Condition	C	נ	New		Certified	1	Use	ł
	Condition	C ₂		v ₂₁		v_{22}		v_{23}	
Conditional attribute	Color	С3	Black	Blue	N Bule	Red	Silver	White	Other
			v_{31}	v_{32}	v_{33}	v_{34}	v_{35}	v_{36}	v_{37}
	Drivetrain C_4	C	AWD		FWD RWD)		
		ι4		v_{41}		v_{42}		v_{43}	
	Fuel Type	C	Gasoline		Hybrid				
		ι ₅		v_{51}				v ₅₂	
	Price	С ₆		0		\sim		9999	9
	MPG	<i>C</i> ₇		0		~		50	
Decision attribute D		very g	ood	good		acceptable	l	bad	
		Cl ₁		Cl_2		Cl ₃	(<i>Cl</i> 4	

Decision Table

4.1 使用データ

米国自動車マーケットプラットフォームCars.comにおけるH社製の車の評価データ*)を事例に 用いた.重みの組み合わせは23パターンに設定した.

	ω_P	ω _C	ω_A	ω_{S}		ω_P	ω_{c}	ω_A	ω_{S}
ω_1	1	0	0	0	ω_{14}	0	0.75	0.25	0
ω_2	0	1	0	0	ω_{15}	0	0.5	0.5	0
ω_3	0	0	1	0	ω_{16}	0	0.25	0.75	0
ω_4	0	0	0	1	ω_{17}	0	0.75	0	0.25
ω_5	0.75	0.25	0	0	ω_{18}	0	0.5	0	0.5
ω_6	0.5	0.5	0	0	ω_{19}	0	0.25	0	0.75
ω_7	0.25	0.75	0	0	ω_{20}	0	0	0.75	0.25
ω_8	0.75	0	0.25	0	ω_{21}	0	0	0.5	0.5
ω_9	0.5	0	0.5	0	ω_{22}	0	0	0.25	0.75
ω_{10}	0.25	0	0.75	0	ω_{23}	0.25	0.25	0.25	0.25
ω_{11}	0.75	0	0	0.25					
ω_{12}	0.5	0	0	0.5					
ω_{13}	0.25	0	0	0.75					

$\omega_{\rm P}$:DPI*の重み
$\omega_{\rm C}$:DCI*の重み
$\omega_{\rm A}$:DAI*の重み
$\omega_{\rm S}$:DSI*の重み

4. 自動車のユーザ評価データへの適用

4.2 結果および考察

4. 自動車のユーザ評価データへの適用

4.2 結果および考察

各重みごとの結果を、縦軸をDSI*、横軸をDPI*とし付置した結果を以下に示す.

2つの指標の重みの設定に応じて、定性的および定量的な要求 を同時に満たす決定ルールのパレート最適解を導出可能

4. 自動車のユーザ評価データへの適用

4.2 結果および考察

各指標の車の仕様

*ותח	仕様	アメリカの自動車市場において販売台数が多い車の仕様
DPI*	詳細	SUVやSedanなどの車種に加えて、車体色黒かつAWD駆動
	仕様	アメリカの自動車市場において販売台数が多く、評価の高い車の仕様
DCI*	詳細	SUVなどの車種に加え,車体色白
DAI*	仕様	アメリカの自動車市場において販売台数が少ない車の仕様
	詳細	製造年数が古いスポーツカータイプ,車体色緑色・オレンジ色
DSI*	仕様	アメリカの自動車市場において販売台数が少ないが評価の高い,特 定の需要を表す車の仕様
	詳細	Hybridかつ燃費が良い

3.6 差動伝送線路の多目的満足化設計

3.6.1 背景·目的

電子機器の設計では、複雑な電磁現象を考慮した上で、Electromagnetic Compatibility (EMC)を含む 高性能で背反的な性質を含む様々な要求を満足した設計を行わなければならない。しかしながら、電気 系においては従来から、複数の設計変数に対して初期値の設定とその値の修正を繰り返す試行錯誤的な ポイントベース設計手法が多く行われている。ポイントベース設計では設計変数の修正を繰り返すこと により、最適な解(ポイント)を求めることになるため、設計変数が多いほど、また要求性能が多いほど 仕様を満足する値を求めることが困難になる。また、製品開発の際には電気系のみで完結することはな く、機械的強度や放熱の問題などもあり、回路素子の配置上の物理的制約による配線や素子の接近に伴 う不要な電磁結合や、素子の偏差など多くの不確定パラメータが生じ、設計をより困難なものにしてい る。このような背景に対して多種多様な性能要件を満たした上で低コスト、かつ短期間で製品を開発す るために、集合論的設計法である選好度付きセットベースデザイン (Preference Set-based Design: PSD) 手法[1]-[2]が機械工学の分野で提案されている。本項では PSD 手法の電気系での適用事例として差動 伝送線路系への適用例[3]について紹介する。差動伝送は、理想的な場合では2つの線路に等量異符号の 差動(differential-mode: DM)信号を励振するため、線路は平衡状態にあり、ノイズ放射が小さく、また 外部からの同相(common-mode: CM)ノイズに強い特徴がある。しかしながら、現実には平衡出力のドライ バ実現は困難であり、また、屈曲や線路の隣接配線等に起因する幾何学的な非対称が存在するため、2つ の線路を伝搬する信号は完全な等量異符号ではなく、振幅値、位相、スルーレートに差が発生し、CM 成 分が生じる。そのため、その抑制方法としてミアンダ等長配線が広く利用されており、本稿では差動伝送 線路の等長配線用ミアンダ遅延線の設計例について紹介する。

3.6.2 検討モデル

差動伝送線路の非対称の原因には、IC ピン等との接続のための不等長、グラウンドパターンや実装部 品の線路付近への配置、屈曲部などがある。その位相補償のための一つの方法として等長配線・ミアンダ 遅延線が広く用いられているが、蛇行部を密にすると電磁結合が生じてしまうため、図1に示すような ガイドライン等が推奨されている[4]。本項ではこのような設計問題を想定し、小型化を含めた屈曲差 動伝送線路の位相補償用ミアンダ配線の多目的設計へのPSD 手法の適用例について紹介する。

検討モデルを図2に示す。 基板は厚み0.1 mm、比誘電率 ϵ_r =4.4のFR-4として、配線は差動インピー ダンス Z_{DM} =100 Ωとなるように配線幅 w=0.14 mm、配線間隔 s=0.14mm とした。等長配線のためのミアンダ は2段とし、ミアンダ間の電磁結合量に関係する I_s と、位相補償量に関係する I_c の2つを設計変数とし た。要求性能は0.1~15 GHz における $|S_{dd1}|$, $|S_{cd1}|$ の最大値が-23 dB 以下、 $|S_{dd21}|$ の最小値が -0.45dB 以上とした。ここで Mixed-mode Sパラメータは DM 成分、CM 成分をモード別に表した S パラメ ータである。DM(差動)成分の透過係数は、論理ポート1に DM で入力したエネルギーに対する論理ポート 2 への DM での出力割合 $|S_{dd21}|$ で表される。また CM(不平衡)へのモード変換透過係数は、論理ポート1に DM で入力したエネルギーに対する論理ポート 2 への CM での出力割合 $|S_{cd21}|$ で表される。要求性能を定性 的に簡単に説明すれば、論理ポート 1 に DM 信号を入力した場合に、その入力信号が反射や CM への変換 ができるだけ少ない条件で論理ポート 2 に伝送されることを目指した設計と言える。


```
図2 差動伝送線路モデル
```

3.6.3 メタモデリング

要求性能を満足するための設計変数を探索するためのモデル(メタモデリング式)を、少ない初期デー タから応答曲面法(Response Surface Methodology: RSM) [5]を用いて作成する。初期データは実験、電 磁界解析、理論計算のいずれを用いても得ることができるが、本検討例では要求性能を満たす設計変数 範囲を探索するための初期データとしてそれぞれの設計変数に表1の"初期3水準"の列に示す3水準 を設定し、計9(3²)通りについて有限差分時間領域(Finite Difference Time Domain Method: FDTD)法 による電磁界解析を行い、各パラメータの周波数特性のワースト値を性能値とした。

相関係数の高いメタモデリング式を得るためには水準数を多くし、正しい範囲解を得るためには予想 される範囲解の周囲を初期値に選ぶ等の方法が考えられるが、一般的には PSD により設計を行う場合に は、設計対象の物理現象や、設計変数とその要求性能の定量的関係性が理論的に完全に明らかな場合は 少ない。また、水準数を多くすると初期データを準備するためのコストが増加する。そのため、本項では 3 水準とし、第1 水準、第3 水準の値をそれぞれ機械的に第2 水準の 1/2、2倍に設定した。また *1*。の 第2 水準の値は、*1s*=3 *w*=0.42 mm とし、*1c* の第2 水準の値は図 2(a) での不等長 0.78 mm を 4 つの屈曲で補 償することを考え、*1c*=0.2 mm とした。

表1 設計変数の初期値及び範囲解

		初期3水準	範囲解	
	水準1	水準2	水準3	
<i>ls</i> [mm]	0.21	0.42	0.84	0.21~0.24
$l_c [\mathrm{mm}]$	0.1	0.2	0.4	0.28~0.29

計算結果を表 2 に示す。本計算結果に対して応答曲面法を適用することにより、設計変数と要求性能の関係を表す応答曲面を次式の 2 次項、1 次項、交互項の和で表される 2 次多項式(メタモデリング式)として求めた。

 $y = \beta_{20} l_s^2 + \beta_{10} l_s + \beta_{02} l_c^2 + \beta_{01} l_c + \beta_{11} l_s l_c + \beta_{00}$

ここで yは|S_{dd11}|などの要求性能であり、β_{mn}は各要求性能に対する各項の係数である。

No	1.	1.	Sam	Supi	Sedul	Supl
NO	[mm]	[mm]	[dB]	[dB]	[dB]	[dB]
1		0.1	-22.7	-0.49	-32.2	-15.2
2	0.21	0.2	-23.5	-0.43	-26.3	-19.2
3		0.4	-23.8	-0.45	-21.0	-26.8
4		0.1	-22.0	-0.48	-31.9	-15.5
5	0.42	0.2	-22.5	-0.41	-28.3	-20.7
6		0.4	-22.3	-0.46	-22.4	-20.6
7		0.1	-21.0	-0.49	-31.0	-15.5
8	0.84	0.2	-21.1	-0.40	-29.4	-20.6
9		0.4	-20.5	-0.44	-27.9	-20.3

表2 応答曲面算出のための初期データ

図3は、実際の値と応答曲面から得られた値の関係を図示したものであり、理想的な応答曲面では、実際の値と応答曲面が完全に一致し、図3上では傾き1、切片0の直線(図中の破線)となるが、現実には 誤差を持つ。 相関係数が低い、つまり近似度が悪い場合、得られた範囲解が要求性能を満足しない可能 性があるが、その場合には最初に得られた範囲解を参考にし、狭い範囲を対象としてメタモデリング式 を求め直すことで高い相関係数が得られ、問題を解決できる可能性がある[6]。本結果では、4つの性能 とも0.94以上と高い相関係数が得らており、本応答曲面を用いて設計変数の全範囲での要求性能を算出 し、PSD 手法の可能性分布、範囲絞り込みを行う。

3.6.4 選好度の設定及び絞り込み結果

設計変数の選好度数の設定は、小型化、高密度化の観点から *I*_s、*I*_cともに小さい値がより好ましいと考え、第1水準値の値(*I*_s=0.21 mm, *I*_c=0.1mm)の選好度数を最大値1、そして第3水準値の値(*I*_s=0.84

mm, *l_c*=0.4mm)の選好度数を最小値0として、その間は線形の関係とした。また、要求性能の選好度数は、 6.5.3.2節での要求性能条件となるように設定した。

設計変数及び要求性能の選好度分布(絞り込み結果)をそれぞれ図4、5に示す。図4において、破線 で囲った範囲(Input set)が"設計意図の表現"で設定した設計変数の選好度であり、実線で囲った範囲 (Resultant set)が"設計変数の範囲絞り込み"において PSD 手法が求めたすべての要求性能を満足す る設計変数の範囲解である。図5において、破線で囲った範囲(Required perform set)が"設計意図の 表現"で設定した要求性能の選好度であり、Possible set は"実現可能性領域の見える化"で求めた可 能性分布を示している。そして、実線(Narrowed set)で囲った範囲は PSD で絞り込みを行った結果であ り、可能性分布と要求性能が重なる共通領域の中に範囲解が存在することを示している。

PSD 手法により得られた設計変数の範囲解は表 1 の "範囲解"の列に示すように、 $I_s = 0.21 - 0.24$ mm、 $I_c = 0.28 - 0.29$ mm と求められた。 PSD ではピンポイントの値ではなくこのようなセットとして設計変 数が与えられることが大きな特徴である。また、 I_s については従来の設計ガイドライン(0.3mm 以上)とは 異なる設計指針を獲得することができた。

本項の検討例では設計変数の数が2であるため、等高線等で図示した2次元平面マップから4つの要 求性能を満足する共通集合領域を求めることができる。PSD 手法の有用性を示すために、得られた応答曲 面から算出した4つの要求性能を満足する共通集合領域と、PSD により絞り込まれた領域を比較した結果 を図6に示す。PSD 手法は、すべての要求性能を満足する共通集合領域の中で設計変数1, 1,が小さな値 の領域を範囲解として求めていることがわかる。これは要求性能の選好度数が高く、そして高密度化の 観点から1, 1,が小さい条件を選好度が高くなるようした選好度設定(設計者の意図)を反映した範囲 解を絞り込むことに成功したこと意味する。設計変数が増えた場合には図的解法は困難であるので、よ り多変数の場合には PSD 手法が有用であると考えられる。

図 64 要求性能の共通集合領域と PSD により得られた範囲解の比較

最後に得られた範囲解の妥当性の検証を行った。得られた範囲解条件について FDTD 解析により求めた 特性の最大値、最小値範囲(図中の塗りつぶし領域)と、範囲解の組み合わせの一例(*I*_c = 0.23 mm, *I*_s = 0.29 mm)の結果(図中の実線:Meander optimized by PSD)を図7 に示す。また、比較のためにミアン ダ遅延線がない場合(図2(a)の不等長配線モデル)の結果(図中の破線:Original)もあわせて示す。 不等長の結果に対して、PSDにより得られた範囲解の組み合わせでは|*S*_{cd1}|が要求性能を満足する範囲内 で劣化しているが、 簡単な解析により、試行錯誤をすることなく、トレードオフ関係にある反射、伝送 損失、モード変換のすべての要求性能を満足する結果となり、小型で良好な特性となるミアンダ遅延線 の設計変数の範囲を簡便に得ることができていることが確認できる。本項での紹介では省略するが、設 計者が制御できない不確定要素が存在するモデルとして、基板厚みや比誘電率に偏差が存在する場合の 屈曲差動伝送線路についても検討を行い、PSD 手法の適用可能性を示している[7]。

図7 要求性能に関する設計変数の範囲解の検証

3.6.5 まとめ

本項では PSD 手法を用いた差動伝送線路の設計例について紹介した。PSD ではピンポイントの値ではな くセットとして設計変数が与えられることが大きな特徴であり、範囲解を得ることは、設計変数のバラ ツキの許容範囲を評価することにもなり、実用的な面から有益である。紹介例は単純なモデルであるが、 様々なモデルへの適用が考えられ、電磁ノイズ問題を含めた電気電子機器設計で試行錯誤が繰り返され てきた分野では有効な設計法になり得ると考えられる。

<参考文献>

- (1) 石川 晴雄, 多目的最適化設計 -セットベース設計手法による多目的満足化-, コロナ, 2010.
- (2) 石川 晴雄, 萱野 良樹, 佐々木 直子, 福永 泰大, セットベース設計 実践ガイド, 森北出版, 2019.
- (3) Y. Kayano, Y. Kami, H. Ishikawa, F. Xiao and H. Inoue, "A Study on Design of Differential-Paired Lines with meander Delay Line by Preference Set-based Design method", Proc. APEMC 2018, pp.536-541, May 2018.
- (4) S. Hall, G.W. Hall, and J.A. McCall, High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices, John Wiley & Sons, INC., New York, 2000.
- (5) R.H. Myers, D.C. Montgomery and C.M. Anderson-Cook, Response Surface Methodology –Process and Product Optimization Using Designed Experiments, Wiley, 2008.
- (6) 菅野良樹, 上芳夫, 石川晴雄, 肖鳳超, 井上浩, "選好度付きセットベースデザイン手法を用いた伝送線路型フィルタの設計法", 信学論 B, vol.J102-B, no.3, pp.237-247, Mar. 2019.
- (7) 萱野良樹,上芳夫,石川晴雄,肖鳳超,井上浩,"選好度付セットベースデザイン手法の屈曲差動伝送 線路設計への適用",信学論 C, vol.J101-C, no.5, pp.233-244, May 2018.

選好度付きセットベース手法を用いた 差動伝送線路の多目的満足化設計 → - 第3回セットベース設計手法に関する調査研究分科会 -

萱野 良樹 - 電気通信大学大学院情報理工学研究科 -

1 研究分野紹介:環境電磁工学

- 2 背景:ポイントベース設計 vs. セットベース設計
- 3 選好度付きセットベースデザイン(PSD)手法
- 4 電気系への応用
- 5 適用例のご紹介:等長配線用ミアンダ遅延線の設計

6 おわりに

2023年1月16日(月)

研究室テーマ(電磁環境、機構デバイス)の大枠紹介

【研究室の大目標:EMC 問題の解決】-

- 安全安心な電磁環境を実現するための技術の確立
- 高品質な電子情報化社会の確立への貢献

単なる過去の経験だけでなく,理論的に根拠のある設計指針の確立

・差動間隔を崩しても等長を優先するか?

等長を妥協して差動間隔を優先するか?

・間隔さえとれば曲げ回数は多くても良いのか?

ട്നസ്ട്

研究のねらい

曲げ回数を極力少なくすべきか?

■ なぜそのポイント値なのかが論理的にはわかりにくい

セットベース設計 (vs. ポイントベース設計)

- モチベーション ― ■ 多種多様な性能要件を満たした上で低コストの製品を短期間 で開発 "解析による試行錯誤的な手法"からの脱却 → "合成を行う設計手法"の確立 - セットベース設計 -The Second Toyota Paradox: How 1995 年に機械工学分野で提唱[†] Delaying Decisions Can Make Better Cars Faster ■ 設計変数と要求性能を範囲で表現 Allen Ward • Jeffrey K. Liker • John J. Cristiano • Durward K. Sobek II トレードオフ特性を把握 絞り込み ■ 複数の性能を満足するように設計 性能2 変数の範囲を絞込 性能1 設計パラメータ空間 設計パラメータ空間

[†] A. Ward, J.K. Likker, J.J. Cristiano and D.K. Sobek, "The second Toyota paradox: how delaying decisions can make better cars faster", *Sloan management review*, pp.43–61, 1995.

Y. Kayano (UEC) : Set-based Desig

1 研究分野紹介:環境電磁工学

- 2 背景:ポイントベース設計 vs. セットベース設計
- 3 選好度付きセットベースデザイン(PSD)手法
- 4 電気系への応用
- <u>5</u> 適用例のご紹介:等長配線用ミアンダ遅延線の設計
- 6 おわりに
選好度付きセットベースデザイン手法^{†,‡} → Preference Set-based Design (PSD)

- 特徴 -

- 選好度 (Preference)と称する概念を導入
- 複数性能を満足する設計変数集合を決定する過程を定量的 に評価

Y. Kayano (UEC) : Set-based Desig

PSD 手法のフローチャート

* R.H. Myers, D.C. Montgomery and C.M.Anderson-Cook, Response surface methodology -process and product optimization using designed experiments, Wiley, 2008.

PSD 手法のフローチャート

PSD 手法のフローチャート

1 研究分野紹介:環境電磁工学

- 2 背景:ポイントベース設計 vs. セットベース設計
- 3 選好度付きセットベースデザイン(PSD)手法
- 4 電気系への応用
- 5 適用例のご紹介:等長配線用ミアンダ遅延線の設計

6 おわりに

環境電磁工学分野での PSD 手法の展開

差動伝送線路の問題点(幾何学的非対称・不平衡問題)

- 伝送信号の劣化(Signal Integrity: SI の劣化) ■ 放射 EMI の増加
- SI, EMI 両観点からの設計のトレードオフ, 実装上の制約等, 多数の設計変数と要求性能 ⇒ PSD

屈曲差動伝送線路の位相補償用ミアンダ配線の PSD を用いた設計

- 動機

 屈曲差動伝送線路の位相補償用ミアンダ配線の多目的設計の 簡便化

ガイドラインの一例:蛇行部での結合をふせぐ

小型化を含めた多目的要求のミアンダ配線について、PSD による設計の提案とその有効性の実証

検討に用いたミアンダ配線モデル

設計変数

- ミアンダ間の結合量に関係する*l*。
- 位相補償量に関係する*l*。
- [メタモデリングのための初期条件]

水準	l_s [mm]	l_c [mm]
1	0.21	0.1
2	0.42	0.2
3	0.84	0.4

- ◎ 誘電体の比誘電率ε_r=4.4
- 誘電体の厚みh=0.1mm
- 線路幅wt=0.14mm
- 差動線路間隔s=0.14mm

Y. Kayano (UEC) : Set-based Design

着目した仕様及び選好度の設定

要求性能(SI中心)

応答曲面作成のための初期データ → FDTD 法を用いて計算

設計変数			性能			
No	<i>l</i> _s [mm]	<i>l</i> _c [mm]	S _{dd11} [dB]	S _{dd21} [dB]	S _{cd11} [dB]	S _{cd21} [dB]
1	0.21	0.1	-22.7	-0.49	-32.2	-15.2
2		0.2	-23.5	-0.43	-26.3	-19.2
3		0.4	-23.8	-0.45	-21.0	-26.8
4	0.42	0.1	-22.0	-0.48	-31.9	-15.5
5		0.2	-22.5	-0.41	-28.3	-20.7
6		0.4	-22.3	-0.46	-22.4	-20.6
7	0.84	0.1	-21.0	-0.49	-31.0	-15.5
8		0.2	-21.1	-0.40	-29.4	-20.6
9		0.4	-20.5	-0.44	-27.9	-20.3

 $= \beta_{20} \cdot l_s^2 + \beta_{10} \cdot l_s + \beta_{02} \cdot l_c^2 + \beta_{01} \cdot l_c + \beta_{11} \cdot l_s \cdot l_c + \beta_{00}$

得られた応答曲面とその評価

要求性能の絞り込み結果

Y. Kayano	(UEC) :	Set-based	Design

共通集合領域と PSD による範囲解の比較

得られた範囲解の検証結果

15 GHz 正弦波で差動励振した場合の磁界分布

等長配線用ミアンダ遅延線の設計のまとめ

- ■トレードオフ関係にある反射、伝送損失、モード変換の全ての要求性能を満足する設計変数の範囲解
- 従来の設計ガイドラインとは異なる設計指針の獲得

関連する検証済みの適用例一

- 放射特性を含む場合
- 基板材料にバラツキがある場合

Y. Kayano (UEC) : Set-based Design

- 1 研究分野紹介:環境電磁工学
- 2 背景:ポイントベース設計 vs. セットベース設計
- 3 選好度付きセットベースデザイン(PSD)手法
- 4 電気系への応用
- 5 適用例のご紹介:等長配線用ミアンダ遅延線の設計

6 おわりに

- ご紹介した内容 ――

"合成を行う設計手法"の確立を目指して,集合論的設計法である PSD 手法の電気系での単純な適用例を紹介

■ 等長配線用ミアンダ遅延線

┌ PSD による設計のメリット ――

- 試行錯誤を行うことなく設計可能・調整も不要
- 選好度を考慮しながら、ロバストな設計解を獲得可能
- 設計値が許容差設計を含む範囲解として得られる
- より複雑な設計では、さらに効果的であることが期待

Y. Kayano (UEC) : Set-based Design

7 付録: PSD の電気系への適用例リスト

PSD の電気系への適用例 → 屈曲線路, 差動線路, メッシュシールド等の伝送線路関係

- [1] 長尾和哉, 川上雅士, 上芳夫, 石川晴雄, 肖鳳超, "電気設計における PSD 手法適用の検討その 2", 2015 年信学総大, B-4-56, p.346, Mar. 2015.
- [2] M. Kawakami, K. Nagao, H. Ishikawa, Y. Kami and F. Xiao, "Study on application of the preference set-based design method to layout of microstrip lines with required performances", 信学技報, EMCJ2015-19, Jun. 2015.
- [4] Y. Kayano, Y. Kami, H. Ishikawa, F. Xiao and H. Inoue, "A study on design of bent differential-paired lines by preference set-based design method", 信学技報, EMCJ2017-16, May 2017.

- [7] Y. Kayano, Y. Kami, H. Ishikawa, F. Xiao and H. Inoue, "A Study on Design of Differential-Paired Lines with Meander Delay Line by Preference Set-Based Design Method", in *Proc. APEMC 2018*, pp.536-541, Singapore, May 2018.
- [8] K. Matsuishi, Y. Kayano, F. Xiao and Y. Kami, "Multi-Objective Design of Transmission Line Referenced to Meshed Ground Planes by Preference Set-based Design", in *Proc. EMC Europe 2019*, pp.486–491, Barcelona, Sep. 2019. など

Y. Kayano (UEC) : Set-based Design

PSD の電気系への適用例 → 集中定数/伝送線路型フィルタ関係

- [9] 川上雅士, 上芳夫, 石川晴雄, 肖鳳超, "選好度付きセットベースデザイン(PSD)手法のフィル 夕設計への適用の検討", 電学論 A, vol.136, no.10, pp.621–628, 2016.

PSDの電気系への適用例

↔ EMI フィルタ関係

- [17] 川上雅士, 長尾和哉, 石川晴雄, 上芳夫, 肖鳳超, "電気設計における PSD 手法適用の検討(その1)", 2015 年信学総大, B-4-55, p.345, Mar. 2015.
- [18] 川上雅士, 上芳夫, ,石川晴雄, 肖鳳超, "選好度付セットベースデザイン(PSD)手法を用いた EMI フィルタ設計手法の検討", 信学技報, EMCJ2015-105, Jan. 2016.
- [19] 川上雅士, 石川晴雄, 上芳夫, 肖鳳超, "チョークコイルの寄生抵抗成分を考慮した PSD 手法に よる EMI フィルタの設計", 2016 年信学総大, B-4-47, p.367, Mar. 2016.

- [24] Y. Kayano, M. Kawakami, Y. Kami, H. Ishikawa, F. Xiao and H. Inoue, "Multi-Objective Design of EMI Filter for Differential Paired-Lines by Preference Set-based Design", in Proc. EMC Sapporo and APEMC2019, pp.812–815, Sapporo, Jun. 2019.
- [26] Y. Kayano, Y. Kami and F. Xiao, "EMI Filter with Attenuation Pole for Differential Paired-Lines and Its Design by PSD", in *Proc. EMC Europe 2020*, #403, online, Sep. 2020.
- [27] B.D. Chinh, Y. Kayano, Y. Kami and F. Xiao, "Multi-Objective Design of EMI Filter by Preference Set-based Design Method and Polynomial Chaos Method", 2022 年信学ソ大, B-4-6, p.176, Sep. 2022.

など

Y. Kayano (UEC) : Set-based Design

0/32

PSD の電気系への適用例 → デバイス (負遅延回路,電源回路)関係

- [30] 萱野良樹, 上芳夫, 石川晴雄, 肖鳳超, 井上浩, "負の群遅延特性のための SIR 型スタブを持つ伝 送線路の PSD 手法による設計", 2017 年信学ソ大, B-4-1, p.204, Sep. 2017.
- [31] Y. Kayano, Y. Kami, H. Ishikawa, F. Xiao and H. Inoue, "Design of Transmission Line with Impedance Resonator for Negative Group Delay and Slope Characteristics by Preference Set-based Design Method", in *Proc. ICEP-IAAC 2018*, pp.170–175, Mie, Apr. 2018.
- [33] 小池健介, 萓野良樹, , 肖鳳超, 上芳夫, "選好度付きセットベースデザイン手法を用いた安定化 電源回路の最適設計と設計解のロバスト性の評価", 2021 年信学総大, B-4-18, p.256, Mar. 2021.

- [35] 上芳夫, 萱野良樹, 石川晴雄, 肖鳳超, "選好度付きセットベース設計手法について", 信学技報, EMCJ2017-59, Nov. 2017.
- [37] 川上雅士, 萱野良樹, 石川晴雄, 上芳夫, 肖鳳超, "選好度付セットベース設計手法を用いた電源-GND プレーンへのデカップリングキャパシタの素子値決定手法の検討", 2018 年信学総大, B-4-34, p.283, Mar. 2018.
- [38] 川上雅士, 萱野良樹, 石川晴雄, 上芳夫, 肖鳳超, "メタモデリングに RBF 補間を用いた PSD 手 法による電圧変動抑制のためのデカップリングキャパシタ実装の一検討", 2019 年信学ソ大, B-4-52, p.249, Sep. 2019.
- [39] 川上雅士, 萓野良樹, 肖鳳超, 上芳夫, 戸花照雄, 秋元浩平, 礒田陽次, "電源-グラウンドプレー ン上に発生する電圧変動の近似式の一検討", 信学論 C, vol.J103-C, no.5, pp.266–269, May 2020.

など

Y. Kayano (UEC) : Set-based Design

- [40] Y. Kayano, K. Miyanaga, H. Inoue and Y. Kami, "Application of the Preference Set-based Design Method to Cantilever for Electrical Contact", *ICEC 2018*, pp.143–149, Oct. 2018.
- [41] 萱野良樹, 宮永和明, 井上浩, 上芳夫, "電気接点用片持ち梁の PSD による多目的最適化", 信学 技報, EMD2019-3, May 2019.
- [43] Y. Kayano, K. Miyanaga and H. Inoue, "Novel Multi-Objective Design Approach for Cantilever of Relay Contact using Preference Set-based Design Method", IEICE Trans. Electron. Vol.E103-C, no.12, pp.713–717, Dec. 2020.