RF回線設計標準

平成29年 5月 16日 C改訂

（平成21年7月8日 初版制定）

宇宙航空研究開発機構
免責条項
ここに含まれる情報は、一般的な情報提供のみを目的としています。JAXA は、かかる情報の正確性、有用性又は適時性を含め、明示又は黙示に何ら保証するものではありません。また、JAXA は、かかる情報の利用に関連する損害について、何ら責任を負いません。

Disclaimer
The information contained herein is for general informational purposes only. JAXA makes no warranty, express or implied, including as to the accuracy, usefulness or timeliness of any information herein. JAXA will not be liable for any losses relating to the use of the information.

発行
〒305-8505 茨城県つくば市千現 2-1-1
宇宙航空研究開発機構 安全・信頼性推進部
JAXA（Japan Aerospace Exploration Agency）
目次

第1章 総則
1.1 目的 1
1.2 適用範囲 1
1.3 関連文書
 1.3.1 適用文書 1
 1.3.2 参考文書 1
1.4 用語
 1.4.1 用語の定義 2

第2章 回線設計の基本的な考え方 7

第3章 基準
3.1 回線設計
 3.1.1 使用周波数 9
 3.1.2 変調方式 10
 3.1.3 回線評価基準 11

図
図2-1 主な通信回線の種類 8

表
表2-1 衛星間通信回線の名称 8
表3-1 搬送波変調形式 10
表3-2 人工衛星局等の電力束密度の制限値 14
第1章 総則

1.1 目的
本設計標準は、宇宙航空研究開発機構（以下「JAXA」という）が開発する宇宙機と地球局間の通信回線について回線設計の基準を与えることを目的とする。

1.2 適用範囲
本設計標準は、JAXAが開発する周回衛星、静止衛星等各種宇宙機のRF回線設計に適用する。使用周波数範囲はS〜Kaバンドまでとする。

1.3 関連文書

1.3.1 適用文書
下記の文書は、この設計標準で呼び出した範囲で適用されるものであり、矛盾が生じた場合には特に規定のない限りこの設計標準が優先する。

(1) 電波法（関連の政令、省令等を含む。）
(2) Radio Regulations
(3) CCSDS Recommended Standards, CCSDS 401.0-B-26
(4) SFCG Recommendation, REC 21-3R1
 Use of Sub-Carriers for Space Science Services on Space-to-Earth Links: Cat. A
(5) SFCG Recommendation, REC 14-3R9, 10
 Use of the 8025-8400 MHz Band by Earth Exploration Satellites

1.3.2 参考文書

(1) JERG-2-400A
 通信設計標準
1.4 用語

1.4.1 用語の定義

以下に、本設計標準に用いられる用語の説明及びその定義を示す。

(1) 衛星間通信回線（Inter Orbit Link: IOL）
データ中継衛星回線とは、静止軌道上のデータ中継衛星を介して、地球の周囲を飛翔するユーザ宇宙機と地球局を結ぶ回線をいう。
また、捕捉追尾のために必要なユーザ宇宙機とデータ中継衛星間の無線回線も含む。

(2) アップリンク
地上局から、データ中継衛星を経由しないで、直接、ユーザ宇宙機へ信号を送る回線。

(3) ダウンリンク
ユーザ宇宙機から、データ中継衛星を経由しないで、直接、他地球局へ信号を送る回線。

(4) 回線マージン（Link Margin）
要求 C/N_0 に対する当該回線で得られる C/N_0 の比を回線マージンという。

(5) 各種損失（Various Losses）
電力分配損失、ポインティング損失、自由空間損失、偏波損失、降雨損失、及び大気吸収損失以外のフェージング、マルチパス、シンチレーション、噴煙、ファラデー効果等による損失をいう。

(6) 降雨損失（Rain Loss）
電磁波が雨滴によって受ける損失をいう。

(7) テレコマンド（TeleCommand）
 tele（遠隔通信）+ command（コマンド）。コマンドの遠隔通信（地上から宇宙機）のこと。なお、コマンドは宇宙機に対する指令のこと。

(8) 雑音電力密度（Noise Power Spectral Density）
無線局（地球局又は宇宙局）の受信系の雑音を全て、受信機の入力端において入力されるものを換算した時の単位周波数帯域幅当たりの等価熱雑音電力をいう。

(9) システム雑音温度（System Noise Temperature）
無線局（地球局又は宇宙局）の受信機には、受信アンテナからの雑音、受信アンテナと受信機を接続する給電線からの雑音、及び受信機自体で発生する雑音が入力される。これらの雑音を総和したものと等価な熱雑音が受信機の入力において発生しているとした場合の雑音温度をシステム雑音温度という。

(10) 自由空間損失（Free Space Loss）
送信点と受信点の間を電波が回折等をすることなく直線的に伝搬し、この送信点と受信点の間に電波の伝搬を妨げるものが存在しないと仮定できる自由空間による伝搬損失を自由空間損失という。

(11) 受信、送信アンテナ利得(Receive, Transmit Antenna Gain)

対象となるアンテナと基準アンテナにそれぞれ受信信号周波数の信号を供給し、これらのアンテナの最大放射方向の同一距離における電界強度を同一にするための信号の供給電力がそれぞれ \(P \)（対象アンテナ）、\(P_0 \)（基準アンテナ）であるとする。このとき \(10 \log (P_0/P) \) を受信、送信アンテナ利得という。

宇宙機のアンテナ利得の表現は、基準アンテナが等方性（isotropic）アンテナ（すべての方向に一様に電力を放射する仮想的なアンテナ）であるときの利得を絶対利得（dBi）といい、基準アンテナが半波長アンテナ（損失のない理想的な完全半波長アンテナ）であるときの利得を相対利得という。この場合において、別段の定めがないときは、アンテナ利得を表す数値は、主放射の方向における利得を示す。また、一般に、等方性アンテナ以外のアンテナを基準アンテナとした場合も相対利得ということもあるが、電波法や Radio Regulations では半波長アンテナを相対利得の基準アンテナとしている。

(12) 信号分配損(Signal Distribution Loss)

QPSK 変調において、Qch 及び Ich に分配される電力と全送信電力の比をデシベル表示した値をいう。

(13) スレショルド基準(Threshold Level)

宇宙機通信を利用したシステムのミッション達成上、宇宙機通信の各ベースバンド信号に要求されるデータ品質（例えば PCM データではビット誤り率、レジデータでは熱雑音によるレンジ誤差等）を得るのに必要な限界の \(S/N \) 又は \(E_b/N_0 \) をいう。ただし、ハードウェアの動作限界が支配的な場合にはそのポイントにおける \(C/N_0 \) をスレショルド基準とする。

(14) 測距信号(Ranging Signal)

宇宙機の軌道決定のため、地球局と宇宙機間の距離及び又は距離の時間変化率を測定するための信号で、地球局のアンテナより発射され、宇宙機のトランスポンダより地球局へ送り返される信号である。

(15) 大気吸収損失(Atmospheric Absorption Loss)

電磁波が大気中の各種分子の運動によって受ける散乱、吸収損失をいう。

(16) テレメトリー(Telemetry)

tele（遠隔通信）+ metry（計測）。メトリの遠隔通信（宇宙機から地上）のこと。メトリとは計測を意味し、HKデータ及びペイロードデータのこと。

(17) 天空雑音(Sky Noise)

大気中の各分子の運動及び降雨によって電磁波が吸収され、この吸収によって発生する雑音をいう。
(18) 電力分配損失（Power Distribution Loss）

電力分配損失 L_{ps} は AGC が飽和特性を有する宇宙局（データ中継衛星）中継系において、搬送波信号電力とその中継器系が持つ雑音電力との相対関係により生じる損失である。

(19) 等価等方放射電力（Equivalent Isotropic Radiated Power : EIRP）
無線局（地球局又は宇宙局）の送信機の出力電力 P_{tx} [dBW] の出力信号が給電損失 L_{FTX} [dB] の給電線によって、利得 G_{ATX} [dBi] のアンテナに供給され、送信アンテナに送信されるものとし、次式で表されるもののが EIRP P_E [dBW] である。

(20) ハードウェア損失（劣化量）
理想的な受信系に対する現実のハードウェア構成の劣化量を損失で表現したもので以下の様なものがある。

- PN コードの相関信号検出を行う際の PN 損失
- 受信信号を復調検出する際の復調損失
- ビーコン信号を検波する際のハードウェア劣化量（中継衛星側の信号検出帯域内に含まれる変調スペクトル電力損）

(21) ファラデー損失（Farady Loss）
電磁波が、電離層を通過する際、電離層の影響により、偏波面が回転することによって生じる損失をいう。

(22) フィーダリンク（Feeder Link）
宇宙機を介した中継回線において、ユーザとの通信を達成するために必要となる地球局と中継衛星間の基幹通信回線をいう。衛星間通信のための地球局－データ中継衛星間の回線、衛星放送における放送局－放送衛星間の回線等

(23) フォワードリンク（Forward Link）
地球局からデータ中継衛星を経由して、ユーザ宇宙機へ信号を送る回線

(24) リターンリンク（Return Link）
ユーザ宇宙機からデータ中継衛星を経由して、地球局へ信号を送る回線。

(25) ビーコンリンク
地球局からデータ中継衛星を経由して、ユーザ宇宙機へビーコン信号（ブロードビーム）を送る回線。

(26) パイロット信号
受信した信号の周波数、位相等の特性から送信波の周波数、位相を取得するための信号。レファレンスとなる信号。

(27) 捕捉追尾回線
データ中継衛星がユーザ宇宙局を捕捉、追尾するための回線。無変調搬送波によつて捕捉、追尾を行う。

(28) 符号化利得(Coding Gain)
情報を誤り訂正符号化することによる、誤り訂正符号化を行わないときの所要 \(E_b/N_0 \) (理論値)からの改善量をいう。

(29) 変調損失(Modulation Loss)
各信号成分電力と全送信電力の比をデシベル表示した値をいう。

(30) 偏波損失(Polarization Coupling Loss)
入力信号波の偏波面と受信アンテナの偏波面とが異なっていることによって生ずる損失のことをいう。

(31) ポイントング損失(Pointing Loss)
アンテナが目標とする指向方向と、宇宙機のダイナミックス(軌道保持精度や姿勢保持精度)や追尾精度等に起因した実際の指向方向とのズレ(指向誤差)により生ずる見かけ上のアンテナ利得の低下分をいう。
なお、この損失は送信・受信個別に求める。

(32) \(C/N \) (Carrier to Noise Power Ratio)
雑音電力に対する無変調時の搬送波電力の比を \(C/N \) という。

(33) 要求 \(C/N_0 \) (Required \(C/N_0 \))
データ伝送上要求される所定の品質を得るのに必要な \(S/N \) 又は \(E_b/N_0 \) に、ビットレート又は帯域幅と信号分配損失、畳込み符号を用いた場合の符号化利得及びハードウェア劣化を含めた値をいう。
ハードウェア劣化としては、受信機入力端までの伝送系損失と受信機内で生ずる復調損失及び \(PN \) 損失が含まれる。ただし、ハードウェアのスレショルド基準が前記の値以上の場合は、ハードウェアのスレショルド基準値の \(C/N_0 \) 換算値を要求 \(C/N_0 \) とする。

(34) \(C/N_0 \) (Carrier to Noise Density Ratio)
単位周波数当たりの雑音電力に対する無変調時の搬送波電力の比を \(C/N_0 \) という。

(35) \(E_b/N_0 \) (Energy to Noise Density Ratio)
1 ビット当りの信号エネルギー対単位周波数当りの雑音電力密度の比をいう。

(36) \(G/T \) (Gain to Noise Temperature Ratio)
無線局(地球局又は宇宙局)のシステム雑音温度に対する受信アンテナ利得の比を受信 \(G/T \) という。本設計標準では、受信アンテナ利得から給電損失及び受信アンテナポインティング損失を減算して \(G \) とし、システム雑音温度は受信機入力端に換算した値を \(T \) として用いる。

(37) \(PN \) 損失(Pseudo Random Noise Loss)
伝送信号に PN コードを用いたスペクトラム拡散波を用いる場合における受信機側の相関信号検出時に発生するハードウェア損失をいう。

(38) S/N (Signal to Noise Ratio)

雑音電力に対する信号電力の比を S/N という。

(39) ミッションカテゴリ (Mission Categories)

軌道の地上に対する高度が 2×10^6 km 未満のミッションをカテゴリ A、2×10^6 km 以上のミッションをカテゴリ B とする。

（CCSDS401.0-B 1.5 参照）

(40) HK データ (HK Data)

搭載機器（ペイロード、サブシステム）の状態やステータスを示すデータのこと。

(41) ペイロードデータ (Payload Data)

ペイロードが取得した観測データ、実験データ等のこと。

(42) Isoflux アンテナ (Isoflux Antenna)

地球周回衛星と地上局方向との距離変化に応じた自由空間損失変動量を補正する放射特性を持つアンテナ。
第2章 回線設計の基本的な考え方

回線設計とは、通信回線において要求される通信の品質を満足するために各種パラメータを選定し、適切な通信回線を構成する作業である。

回線設計を行う際には、まず、要求される通信の品質を維持するため、回線として必要な符号対雑音比（S/N）、回線マージン、回線不稼働率等を明らかにする必要がある。しかる後、各種の制約条件のもとで変化させる各パラメータの値を設定して符号対雑音比（S/N）、回線マージンの回線設計値を算出する。これらの値を要求値に合うよう調整していき、目的の通信品質を達成できる回線を構成する。

回線設計値の算出は基本的に地球局⇔宇宙機のように二つの通信ハードウェア間の計算となるが、測距や衛星間通信等のケースは3点以上の通信ハードウェアを経由するものもある。これらは2点間の算出値を経由する分だけ足しあわせて評価することになり、その分複雑になる。本設計標準では次項に述べるさまざまな通信リンクを統一的に取扱えるよう設計手順を取り決めている。

上記のパラメータを決める際の制約条件としては、局の能力等の技術的な問題がある。他に、通信回線の干渉を避けるために国際的な基準として、最大電力束密度に関する規定等が設けられており、さらに、これらに加え次の事項を満足させるよう考慮する必要がある。

(1) 周波数資源の効率的な使用と情報伝送レート及び回線品質のバランスを取ること。
(2) 宇宙機システムは、地上と宇宙機、宇宙機と宇宙機が対向して通信を行うことから、それぞれの回線品質がバランスの取れたものである必要がある（どれかが過剰になっていないこと）。また、マージンは、飽くまでもシステム全体として目標とする所要のC/N_0からの余裕分であり、必要最小限となることに努めるべきである。
(3) 国際的、国内的な法律、制度における規定を満足するものであること。

本設計標準で扱う回線は地球局から直接宇宙機と回線を構成するものとデータ中継衛星を使用するものの2通りに分けられる。それぞれの回線種類及び呼称を図2-1及び表2-1に示す。
図 2-1 主な通信回線の種類

表 2-1 衛星間通信回線の名称

<table>
<thead>
<tr>
<th>回線の名称</th>
<th>地球局→データ中継衛星</th>
<th>データ中継衛星→ユーザ宇宙機</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Sバンドシングルアクセス(SSA)フォワードリンク</td>
<td>30 GHz 帯</td>
<td>2.0 GHz 帯</td>
</tr>
<tr>
<td>② Sバンドシングルアクセス(SSA)リターンリンク</td>
<td>20 GHz 帯</td>
<td>2.2 GHz 帯</td>
</tr>
<tr>
<td>③ Kバンドシングルアクセス(KSA)フォワードリンク</td>
<td>30 GHz 帯</td>
<td>23 GHz 帯</td>
</tr>
<tr>
<td>④ Kバンドシングルアクセス(KSA)リターンリンク</td>
<td>20 GHz 帯</td>
<td>26 GHz 帯</td>
</tr>
<tr>
<td>⑤ Kバンドフォワードビーコンリンク</td>
<td>30 GHz 帯</td>
<td>23 GHz 帯</td>
</tr>
<tr>
<td>⑥ Kバンドリターン捕捉追尾回線</td>
<td>N/A</td>
<td>26 GHz 帯</td>
</tr>
<tr>
<td>⑦ パイロット信号</td>
<td>30 GHz 帯</td>
<td>N/A</td>
</tr>
<tr>
<td>⑧ Sバンド測距</td>
<td>30/20 GHz 帯</td>
<td>2.0/2.2 GHz 帯</td>
</tr>
<tr>
<td>⑨ Kバンド測距</td>
<td>30/20 GHz 帯</td>
<td>23/26 GHz 帯</td>
</tr>
</tbody>
</table>
第3章 基準

3.1 回線設計

3.1.1 使用周波数

JAXA 宇宙機において使用されている TT&C 周波数帯は以下の通りである。

(1) S バンド：

JAXA 宇宙機等でテレメトリ、テレコマンド及び測距の回線に使用されている。
地球局と宇宙機間の直接通信用として、アップリンクに 2025～2110 MHz 帯、ダウンリンクに 2200～2290 MHz 帯が選定されている。
また、データ中継衛星とユーザ宇宙機との間のフォワードリンクに 2025～2110 MHz 帯が、リターンリンクに 2200～2290 MHz 帯が選定されている。

(2) C バンド：

測位衛星では 5 GHz 帯が使用されている。

(3) X バンド：

地球観測衛星におけるペイロードデータ送信で使用されている。8025～8400 MHz 帯及び 8450～8500 MHz 帯が選定されている。
また、科学ミッションのペイロードデータ送受信に使用されており、アップリンクに 7145～7235 MHz 帯が、ダウンリンクに 8400～8500 MHz 帯が選定されている。

(4) Ka バンド：

データ中継衛星において地球局との S バンド直接通信用とともに、テレメトリ、テレコマンド及び測距の回線に使用されている。アップリンクに 30 GHz 帯、ダウンリンクに 20 GHz 帯が選定されている。
この他、衛星間通信では地球局と中継衛星(DRTS 等)との間のフィーダリンクに 30 GHz 帯(アップ)と 20 GHz 帯(ダウン)が選定され、データ中継衛星とユーザ宇宙機との間のフォワードリンクに 23 GHz 帯が、リターンリンクに 26 GHz 帯が選定されている。
さらに、科学ミッション（深宇宙）で、34 GHz 帯(アップ)と 31 GHz 帯(ダウン)が選定されている。

なお、選定するにあたって、以下の点に留意すること。

開発する宇宙機システムにおいては、地上システムの性能、設備状況、運用制限等を考慮し、上述の周波数帯から選定することが必要である。

なお、周波数は、一つの有限な資源として取り扱うことが必要で、特に混み合っている S バンドでは他の宇宙機システムとの混信を避ける工夫が必要となっている。
3.1.2 変調方式

TT&Cデータの伝送に用いられる搬送波の変調方式を表3-1に示す。

表3-1 搬送波変調形式

<table>
<thead>
<tr>
<th>信号種別</th>
<th>回線種別</th>
<th>直接衛星回線</th>
<th>データ中継衛星回線(注1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKデータ</td>
<td></td>
<td>PCM-PSK/PM</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCM/PM, BPSK, QPSK</td>
<td></td>
</tr>
<tr>
<td>S S Aリターンリンク</td>
<td>N/A</td>
<td>BPSK, QPSK, UQPSK, SQPSK, SQPN, USQPN</td>
<td></td>
</tr>
<tr>
<td>K S Aリターンリンク</td>
<td>N/A</td>
<td>BPSK, QPSK, UQPSK</td>
<td></td>
</tr>
<tr>
<td>ペイロードデータ</td>
<td></td>
<td>PCM-PSK/PM, PCM/PM, BPSK, QPSK, UQPSK, 16QAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BPSK, QPSK, SQPSK, UQPSK</td>
</tr>
<tr>
<td>テレコマンド</td>
<td></td>
<td>PCM-PSK/PM, PCM/PM(注2)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UQPSK</td>
</tr>
<tr>
<td>S S Aフォワードリンク</td>
<td>N/A</td>
<td>BPSK, QPSK, UQPSK</td>
<td></td>
</tr>
<tr>
<td>K S Aフォワードリンク</td>
<td>N/A</td>
<td>BPSK, QPSK, UQPSK</td>
<td></td>
</tr>
<tr>
<td>測距</td>
<td></td>
<td>Tone/PM, PCM/PSK/PM (PNレンジング)(注2)</td>
<td>SQPN-SS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UQPSK-SS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tone/PM, PCM/PSK/PM (PNレンジング)(注2)</td>
<td></td>
</tr>
</tbody>
</table>

(注1) データ中継衛星回線の変調方式は、DRTSスペースネットワークシステムの適用をベースとしている。

(注2) 昼田64m系設備、内之浦34m系設備および内之浦20m系設備を使用する場合に限る。

(1) 測距とテレメトリ・テレコマンドとの同時伝送

通常の宇宙機とのTT&C通信回線においては、測距とテレコマンド、測距とテレメトリの同時伝送が可能な様に変調方式及びデータレートを選定すること。
データ中継衛星回線では、HKデータ/テレコマンド回線にはスペクトラム拡散変調方式を採用することとなっており、拡散用PNコードを用いて測距することが可能である。
一方、直接衛星回線では、残留搬送波方式が主であり、その場合、テレコマンドと測距信号、テレメトリと測距信号の相互干渉が発生しないような副搬送波周波数、シンボルレート、変調度を選択すること。

(2) 低ビットレート（数kbps以下）のデータ伝送では、搬送波位相雑音によるBER劣化（データ品質劣化）に注意が必要であり、副搬送波の利用もその対応策のひと
つである。ただし、その場合、1.3.1適用文書(4)への適合と測距信号との干渉を検討すること。副搬送波への変調形式はPSK、符号はNRZが一般的である。

(3) 数10kbps以上のデータ伝送では、伝送帯域を極力狭くすることや電力利用効率を向上させることから搬送波抑制方式のPSK変調方式を選択することができる。
この場合には、変調スペクトルの広がりを抑えることの他、伝送系を線形動作にして波形歪みによるデータ品質劣化を防止する等に留意する。

3.1.3 回線評価基準
回線設計の評価は、国際的な規定の電力束密度制限を満たしつつ、所要の回線品質が、所要の時間率及び空間率において、所要の回線マージンを有して得られるか否かによって行われる。
したがって、設計基準として、
a. 回線品質基準
b. 降雨による回線不稼動率
c. アンテナ視野内回線成立面積率
d. 回線マージン
e. 最大電力束密度
を設定する。

(1) 回線品質基準
これまでの設計基準及びその運用経験から次の品質基準とする。
a. テレコマンド：BER 1×10^{-6}
b. テレメトリ：BER 1×10^{-5}
（RF変調入力からRF復調出力まで。ただし、畳み込み符号を用いる場合にのみ、畳み込み符号入力からビタービ復号出力までとする。）
c. 測距：地球局測距精度規定S/N_0
ただし、ペイロードデータ並びに月／L点の科学ミッションおよびカテゴリBミッションのテレコマンドについては、当該プロジェクトの要求品質が優先することとする。
測距系については、これまで熱雑音による測距誤差を品質基準としてきたが、実運用経験から地球局の測距精度規定ポイントの測距信号S/N_0（精度・捕捉時間が運用上支障のないレベル）と規定する。
（2）降雨による回線不稼動率

回線に降雨による影響を考慮しなければならないのは、S バンドおよび C バンドを除いて X バンド以上の周波数帯を使用する場合である。その場合、回線設計上は降雨による回線不稼動率を設定し、所定の降雨損失を計上しなければならない。

TT&C 回線においては、次の回線不稼動率を基準とする。捕捉追尾回線の回線不稼働率については、使用する各回線不稼働率に準拠するものとする。

a. テレメトリ（HK データ）回線：0.1%以下
b. テレメトリ（ペイロードデータ）回線：1.0%以下
c. テレコマンド回線：0.1%以下
d. 測距回線：1.0%以下

なお、HK データとペイロードデータが混在する回線は、ペイロードデータ回線として上記回線不稼働率を適用する。

また、実験ミッションや科学ミッションのうち、上記回線不稼働率の適用が困難な場合においては、その要求により降雨による回線不稼動率を設定して、所定の降雨損失を計上する。

（3）アンテナ視野内回線成立面積率

アンテナ視野内での回線の成立性検討には、宇宙機搭載時におけるアンテナパターンの切れ込みの評価が大きく影響する。従って、回線成立の与条件として、回線成立面積率（回線が成立する空間面積とアンテナ視野空間面積との比）が原則として 90% 以上となる宇宙機搭載時のアンテナ利得を規定し、回線設計に適用すること。なお、この面積率の値は、宇宙機の機器配置や姿勢と可視時間の関係等、個々の宇宙機の特殊性を考慮し、運用に支障がないことを確認の上でプロジェクト毎に設定してもよい。

（4）回線マージン

回線マージンは、設計最悪値を用いて 0 dB 以上とする。但し、他の回線との干渉、中継器内の混変調等が予測される場合は、1 dB 以上のマージンを確保すること。

（5）最大電力束密度

表 3-2 に示す値を満たすこと。また、次の個別に規定されている最大電力束密度の値を満たすこと。

a. 非静止衛星の地球探査衛星業務として 8025〜8400 MHz 帯を使用する場合、宇宙機から放射される電波の静止軌道における最大電力束密度は、いかなる 4 kHz 幅においても -174 dB(W/m2) を超えてはならない（1.3.1 適用文書(2) 22.5 項参照）。

b. 無指向性アンテナを用いる地球観測衛星は、8025〜8400 MHz 帯のいかなる 4 kHz 幅においても最大電力束密度は -123 dB(W/m2) を超えてはならない（1.3.1 適用文書 (5)(SFCG 14-3R9)参照、2016 年 12 月 31 日以前に開発着手した衛星に適用）。

c.1. 指向性アンテナを用いる地球観測衛星は、緯度 55 度より大きい、または 55 度
より小さい領域に限り、8025〜8400 MHz 帯のいかなる 4 kHz 幅においても最大電力束密度は-145 dB(W/m2)を超えてはならない（1.3.1 適用文書(5)(SFCG 14-3R10)参照、2017 年 1 月 1 日以降に開発着手した衛星に適用）。

c-2. Isoflux アンテナを用いる地球観測衛星は、8025〜8400 MHz 帯のいかなる 4 kHz 幅においても最大電力束密度は-150 dB(W/m2)を超えてはならない（1.3.1 適用文書(5)(SFCG 14-3R10)参照、2017 年 1 月 1 日以降に開発着手した衛星に適用）。

c-3. 指向性, Isoflux アンテナ以外のアンテナを用いる地球観測衛星は、8025〜8400 MHz 帯のいかなる 4 kHz 幅においても最大電力束密度は-147 dB(W/m2)を超えてはならない（1.3.1 適用文書(5)(SFCG 14-3R10)参照、2017 年 1 月 1 日以降に開発着手した衛星に適用）。
<table>
<thead>
<tr>
<th>周波数帯</th>
<th>業務</th>
<th>水平面からの到来角（°）に対する電力束密度制限值（dB/Wm²）</th>
<th>参照帯域幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 670-1 700 MHz</td>
<td>Earth exploration-satellite Meteorological-satellite</td>
<td>-133</td>
<td>1.5 MHz</td>
</tr>
<tr>
<td>1 525-1 530 MHz (Region 1, Region 3)</td>
<td>Meteorological-satellite (space-to-Earth) Space research (space-to-Earth) Space operation (space-to-Earth) (space-to-space) Earth exploration-satellite (space-to-Earth) (space-to-space)</td>
<td>-154</td>
<td>4 kHz</td>
</tr>
<tr>
<td>2 500-2 690 MHz</td>
<td>Fixed-satellite Broadcasting-satellite Radiodetermination-satellite Mobile-satellite Mobile-satellite (except aeronautical mobile-satellite)</td>
<td>-136.9</td>
<td>1 MHz</td>
</tr>
<tr>
<td>3 400-4 200 MHz</td>
<td>Fixed-satellite (space-to-Earth) (geostationary-satellite orbit)</td>
<td>-152</td>
<td>4 kHz</td>
</tr>
<tr>
<td>3 400-4 200 MHz</td>
<td>Fixed-satellite (space-to-Earth) (non-geostationary-satellite orbit)</td>
<td>-138 – Y</td>
<td>1 MHz</td>
</tr>
<tr>
<td>4 500-4 800 MHz</td>
<td>Fixed-satellite (space-to-Earth) Meteorological-satellite (space-to-Earth) Mobile-satellite Space research</td>
<td>-152</td>
<td>4 kHz</td>
</tr>
<tr>
<td>5 150-5 216 MHz</td>
<td>Fixed-satellite (space-to-Earth)</td>
<td>-164</td>
<td>4 kHz</td>
</tr>
<tr>
<td>6 700-6 825 MHz</td>
<td>Fixed-satellite (space-to-Earth)</td>
<td>-13714</td>
<td>1 MHz</td>
</tr>
<tr>
<td>6 825-7 075 MHz</td>
<td>Fixed-satellite (space-to-Earth)</td>
<td>-154 and -134</td>
<td>4 kHz</td>
</tr>
<tr>
<td>8 025-8 500 MHz</td>
<td>Earth exploration-satellite (space-to-Earth) Space research (space-to-Earth)</td>
<td>-150</td>
<td>4 kHz</td>
</tr>
<tr>
<td>9 900-10 400 MHz</td>
<td>Earth exploration-satellite (active)</td>
<td>-113</td>
<td>1 MHz</td>
</tr>
<tr>
<td>10.7-11.7 GHz</td>
<td>Fixed-satellite (space-to-Earth) (geostationary-satellite orbit)</td>
<td>-150</td>
<td>4 kHz</td>
</tr>
<tr>
<td>10.7-11.7 GHz</td>
<td>Fixed-satellite (space-to-Earth) (non-geostationary-satellite orbit)</td>
<td>-126</td>
<td>1 MHz</td>
</tr>
<tr>
<td>10.7-11.7 GHz (Region 3)</td>
<td>Fixed-satellite (space-to-Earth) (non-geostationary-satellite orbit)</td>
<td>-129</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

（value based on sharing with meteorological aids service）
表3-2（つづき）人工衛星局等の電力密度の制限値

<table>
<thead>
<tr>
<th>周波数帯</th>
<th>業務</th>
<th>水平面からの到来角(δ)に対する電力密度制限値dB(W/m²)</th>
<th>参照帯域幅</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0°-5°</td>
<td>5°-25°</td>
</tr>
<tr>
<td>11.7-12.75 GHz (Region 3)</td>
<td>Fixed-satellite (space-to-Earth) (non-geostationary-satellite orbit)</td>
<td>–124</td>
<td>–124 + 0.5(δ–5)</td>
</tr>
<tr>
<td>12.2-12.75 GHz (Region 3)</td>
<td>Fixed-satellite (space-to-Earth) (geostationary-satellite orbit)</td>
<td>–148</td>
<td>–148 + 0.5(δ–5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or</td>
<td>–115 + 0.5(δ–5)</td>
</tr>
<tr>
<td>17.7-19.3 GHz</td>
<td>Fixed-satellite (space-to-Earth) Meteorological-satellite (space-to-Earth)</td>
<td>–120</td>
<td>0°-3°</td>
</tr>
<tr>
<td>31.0-31.3 GHz 34.7-35.2 GHz (space-to-Earth transmissions referred to in No. 5.550 on the territories of countries listed in No. 5.549)</td>
<td>Fixed-satellite (space-to-Earth) (non-geostationary-satellite orbit)</td>
<td>–120</td>
<td>–120 + 0.75(δ–5)</td>
</tr>
<tr>
<td>31.8-32.3 GHz</td>
<td>Fixed-satellite (geostationary-satellite orbit)</td>
<td>–125</td>
<td>–125 + (δ–5)</td>
</tr>
<tr>
<td>37.3-33 GHz</td>
<td>Fixed-satellite (non-geostationary-satellite orbit) Mobile-satellite (non-geostationary-satellite orbit)</td>
<td>–120</td>
<td>–120 +0.75(δ–5)</td>
</tr>
</tbody>
</table>
表 3-2（最終）人工衛星局等の電力束密度の制限値

<table>
<thead>
<tr>
<th>周波数帯</th>
<th>業務</th>
<th>水平面からの到来角(δ)に対する電力束密度制限値[dB(W/m²)]</th>
<th>参照帯域幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5-40 GHz</td>
<td>Fixed-satellite (geostationary-satellite orbit) Mobile-satellite (geostationary-satellite orbit)</td>
<td>0°-5° 5°-20° 20°-25° 25°-90°</td>
<td>1 MHz</td>
</tr>
<tr>
<td>40-40.5 GHz</td>
<td>Fixed-satellite</td>
<td>-115</td>
<td>-115 +0.5(δ−5)</td>
</tr>
<tr>
<td>40.5-42 GHz</td>
<td>Fixed-satellite (non-geostationary-satellite orbit) Broadcasting-satellite (non-geostationary-satellite orbit)</td>
<td>-115</td>
<td>-115 +0.5(δ−5)</td>
</tr>
<tr>
<td>40.5-42 GHz</td>
<td>Fixed-satellite (geostationary-satellite orbit) Broadcasting-satellite (geostationary-satellite orbit)</td>
<td>-120</td>
<td>5°-15° 15°-25°</td>
</tr>
<tr>
<td>42-42.5 GHz</td>
<td>Fixed-satellite (non-geostationary-satellite orbit) Broadcasting-satellite (non-geostationary-satellite orbit)</td>
<td>-120</td>
<td>5°-25°</td>
</tr>
<tr>
<td>42-42.5 GHz</td>
<td>Fixed-satellite (geostationary-satellite orbit) Broadcasting-satellite (geostationary-satellite orbit)</td>
<td>-127</td>
<td>5°-20° 20°-25°</td>
</tr>
</tbody>
</table>

（注1）この表は、1.3.1適用文書(2)(2012年版)21条の表21-4に基づき、地球全域及びRegion 3を対象とした地域に対する周波数帯での制限値を記載している。なお、この表は2015年に開催されたWRC2015での決議を反映している。

（注2）上記制限値には脚注が付されているものがあるので、適用に当たっては1.3.1適用文書(2)21条の表21-4を参照のこと。