機構設計標準

平成27年2月24日　A改訂
（平成21年7月8日 初版制定）

宇宙航空研究開発機構
免責条項
ここに含まれる情報は、一般的な情報提供のみを目的としています。JAXA は、かかる情報の正確性、有用性又は適時性を含め、明示又は黙示に何ら保証するものではありません。また、JAXA は、かかる情報の利用に関連する損害について、何ら責任を負いません。

Disclaimer
The information contained herein is for general informational purposes only. JAXA makes no warranty, express or implied, including as to the accuracy, usefulness or timeliness of any information herein. JAXA will not be liable for any losses relating to the use of the information.

発行
〒305-8505 茨城県つくば市千歳 2-1-1
宇宙航空研究開発機構 安全・信頼性推進部
JAXA（Japan Aerospace Exploration Agency）


目次

1. 適用範囲 ................................................................................................................................. 1
   1.1 目的 ................................................................................................................................. 1
   1.2 適用対象 ......................................................................................................................... 1
   1.3 テーラリング ................................................................................................................. 1
2. 関連文書 ............................................................................................................................... 1
   2.1 適用文書 ......................................................................................................................... 1
   2.2 参考文書 ......................................................................................................................... 2
3. 用語、定義及び略語 ............................................................................................................ 3
   3.1 用語及び定義 .................................................................................................................. 3
   3.2 記号及び略号 .................................................................................................................. 4
4. 一般要求事項 ....................................................................................................................... 4
   4.1 システム性能 .................................................................................................................. 4
   4.2 ミッション ....................................................................................................................... 4
   4.3 機能 ................................................................................................................................ 4
5. 設計要求 ................................................................................................................................ 5
   5.1 インタフェース .................................................................................................................. 5
   5.2 環境設計基準 ................................................................................................................... 5
      5.2.1 地上環境 ................................................................................................................... 5
      5.2.2 打上げ環境 ............................................................................................................... 5
      5.2.3 軌道上環境 ............................................................................................................... 6
   5.3 部品・材料 ....................................................................................................................... 6
      5.3.1 部品への要求 ............................................................................................................ 6
      5.3.2 材料への要求 ............................................................................................................ 6
   5.4 機構設計 ........................................................................................................................ 7
      5.4.1 精度設計 ................................................................................................................... 7
      5.4.2 駆動設計 ................................................................................................................... 7
      5.4.3 命設計 ....................................................................................................................... 8
      5.4.4 トライボロジー ......................................................................................................... 8
      5.4.5 主な機構部品 ........................................................................................................... 9
      5.4.6 その他要求事項 ....................................................................................................... 9
   5.5 構造設計 ........................................................................................................................... 10
      5.5.1 構造設計に関わる一般要求 ..................................................................................... 10
      5.5.2 材料の許容値 .......................................................................................................... 10
      5.5.3 強度安全マージン .................................................................................................. 10
      5.5.4 剛性設計 .................................................................................................................. 10
   5.6 熱設計 ............................................................................................................................... 11
   5.7 電気設計 ........................................................................................................................... 11
      5.7.1 電気設計 ................................................................................................................... 11
      5.7.2 電線 .......................................................................................................................... 11
5.7.3 電気コネクタ ................................................................. 11
5.7.4 絶縁 ................................................................. 11
5.7.5 接地 ................................................................. 11
5.7.6 配線の変形 ................................................................. 11
5.8 一般要求事項 ................................................................. 12
5.8.1 安全性 ................................................................. 12
5.8.2 信頼性 ................................................................. 12
5.8.3 品質管理 ................................................................. 12
5.8.4 コンフィギュレーション ................................................................. 12
5.8.5 穀長性 ................................................................. 12
5.8.6 運用性 ................................................................. 13
5.8.7 保全性 ................................................................. 13
5.8.8 互換性 ................................................................. 13
5.8.9 過誤防止設計 ................................................................. 13
5.8.10 その他の要求 ................................................................. 13
6. 検証 ................................................................. 14
6.1 解析による検証 ................................................................. 14
6.1.1 最悪状態の特定 ................................................................. 14
6.1.2 熱解析 ................................................................. 15
6.1.3 構造解析 ................................................................. 15
6.1.4 機能・性能解析 ................................................................. 15
6.1.5 力学的マージンの解析 ................................................................. 15
6.1.6 衝撃の発生と感受性 ................................................................. 15
6.1.7 発生擾乱 ................................................................. 16
6.1.8 潤滑の解析 ................................................................. 16
6.1.9 寿命解析 ................................................................. 16
6.1.10 磁気または電磁解析 ................................................................. 16
6.1.11 放射線解析 ................................................................. 16
6.1.12 ストレス解析 ................................................................. 16
6.2 試験による検証 ................................................................. 16
6.2.1 基本原則 ................................................................. 16
6.2.2 開発試験 ................................................................. 17
6.2.3 認定試験 ................................................................. 17
6.2.4 受入試験 ................................................................. 18
6.2.5 寿命試験 ................................................................. 18
付録I 寿命試験のサイクル数 ................................................................. 20
1. 適用範囲

1.1 目的
本設計標準は、宇宙機（人工衛星・探査機）に使用する機構組立品（以下「機構」という）の設計・品質管理及び試験のための要求事項について記述するものであり、機械的作動を伴うすべての宇宙機用機構の高い信頼性を確保することを目的とする。

1.2 適用対象
本設計標準で取扱う要求事項は、宇宙機に搭載する機構に適用される。なお、ロケット、有人宇宙機器については対象の範囲外とする。

1.3 テーラリング
(1) 本文書を適用するに当たり、プロジェクトごとに設計対象の規模・重要度、ミッションの性質、機能・性能、開発方式、技術的リスク、運用条件、信頼性要求、製造・運用・メンテナンス等に係るコスト要求、スケジュール、国際共同ミッション由来の要求等に応じて、この標準の要求事項をテーラリング（要求の追加・削除・変更）することがある。
(2) テーラリングを行った結果は承認が必要であり、テーラリングを行った経緯・その妥当性については記録に残すものとする。

2. 関連文書

2.1 適用文書
下記の文書は、本設計標準で呼び出した範囲で適用されるものであり、矛盾が生じた場合は特に規定のない限り本設計標準が優先する。なお他に規定のない限り文書は契約時の最新版を適用する。

(1) JMR-001 システム安全標準
(2) JMR-004 信頼性プログラム標準
(3) JMR-005 品質保証プログラム標準
(4) JMR-006 コンフィギュレーション管理標準
(5) JERG-2-000 宇宙機（人工衛星・探査機）設計標準
(6) JERG-2-020 科学衛星搭載機器の電気設計基準書
(7) JERG-2-143 耐放射線設計標準
(8) JERG-2-200 電気設計標準
(9) JERG-2-212 ワイヤディレーティング標準
2.2 参考文献

本設計標準に関連する参考文献を以下に示す。

(1) JERG-0-019 コンタミネーション管理ハンドブック
(2) JERG-0-034 宇宙用有機材料アウトガスデータ集
(3) JERG-0-035 宇宙開発事業団部品適用ハンドブック
(4) JERG-0-037 宇宙用機構及び機構部品設計ガイドライン
(5) JERG-2-141 宇宙環境標準
(6) JERG-4-004 宇宙用駆動機器信頼性ハンドブック
(7) ECSS-E-ST-33-01 Space Engineering, Mechanisms
3. 用語、定義及び略語

3.1 用語及び定義
(1) アウトガス
真空中で生じる材料からのガス放出。
(2) インタフェース
あるシステムの二つの要素間において機械的、熱的、電気的、作動的に共通な境界
(3) 受入試験
システム、サブシステム、コンポーネントまたは機能部品に、該当品目に関し
て達成すべき仕様事項について定めた購入仕様書、または、その他の文書に規定
されている性能要求事項を満たす能力があることを明らかにするとともに、その
品目に製造上の欠陥の無いことを実証するための試験
(4) 機構
互いに結合させて、相対運動を可能とさせる機械要素の集合体。機構組立品。
(5) コンタミネーション
対象の表面に対して汚染物質が付着すること、あるいは付着している状態。
(6) 潤滑
接触表面または運動表面の間での摩擦、摩耗または粘着を低減させるため、接
触する二つの表面の間に特定の表面特性を持つ材料を使用すること、または適用
すること
(7) 冗長性
規定の機能を果たさせるための構成要素または手段を余分に付加し、その一部
が故障しても上位アイテムは故障とならない性質
(8) デブリ
機構部品の作動による摩耗物等をいう。宇宙空間に漂う人工的な塵、破片や天
然由来の物体の意味にも使われる。本標準では、後者はスペースデブリと記述す
る。
(9) トライボロジー
相対運動をしながら互いに干渉しあう２面、ならびに、それに関連した諸問題
と実地応用に関する科学と技術
(10) 認定試験
機構または機構部品の設計が、マージンが指定されたその運用環境において、
その指定された性能要求事項を満たすことのできる能力のあることを判断するた
めの試験
保全性
規定の保全環境の下で、最小の時間と技量と資源で運用目的を満足させるために必要な検査、試験、点検、サービス、修理及びオーバーホールの作業を促進するような機器の設計と設備の組合わされた特性

ミスアラインメント
機械要素、部品相互間の幾何学的な位置誤差（並進変位、傾き、ねじれ等）

ミッション
宇宙において一貫した調査または運用を遂行して、プログラムの目的を達成すること

ラッチングまたはロッキング
ある機構の持つ一つまたは二つ以上の自由度に対し前もって制約が加えられていない場合、こうした自由度を意図的に制約することをいい、この場合、その機構を解放するには何らか的操作が必要となる。

3.2記号及び略号
(1) EMC Electro Magnetic Compatibility
電磁適合性

4.一般要求事項
本要求事項は、機構の設計及び設計検証を対象としたものである。

4.1システム性能
機構の機能性能は、システムの性能要求事項に適合すること。

4.2ミッション
機構の設計に当たっては、個々のプログラムで設定されているミッションの全期間に対応するものであること。また、ミッションの各段階における要求事項、環境条件を全て満足するものであること。

4.3機能
(1)機構の動作についての規定がなされていること。
(2)機械的インタフェース、動作の精度、許容誤差を含む速度等が規定されていること。また、規定された要求を満足することを検証すること。
(3)機構を構成する部品の動作包絡域が規定されること。また、この包絡域が他の
5. 設計要求

5.1 インタフェース
(1) 構造インタフェース
機械は、仕様で規定される構造インタフェース条件及び要求に適合していること。
(2) 熱インタフェース
機械は、仕様で規定される熱インタフェース条件および要求に適合していること。
(3) 熱機械インタフェース
機械は、取付点との間に発生する熱応力に留意して設計すること。
(4) 電気インタフェース
機械は、仕様で規定される電気インタフェース条件及び要求に適合していること。
(5) 物理インタフェース
機械の質量は、仕様で規定される要求に適合していること。
(6) その他のインタフェース
機械は、仕様で規定される光学（視野）、取付アライメント、作業の際のアクセス性、包絡域、他の機械とのクリアランス、地上機械とのインタフェース条件に適合していること。

5.2 環境設計基準
機械は、仕様で規定される環境条件要求に適合していること。

5.2.1 地上環境
(1) 機械は、地上試験、組立、保管、輸送等の地上での取扱い環境条件に供した後でも、要求性能を満たすこと。
(2) 地上試験環境として、温度、振動、音響、衝撃、雰囲気ガス種、圧力、湿度、清浄度、腐食環境などを考慮すること。

5.2.2 打上げ環境
(1) 機械は、ロケット打上げ時の環境条件に曝された後でも、要求性能を満たすこと。
(2) 打ち上げ環境として、温度、振動、音響、衝撃、圧力、湿度など、及び、これらのパラメータの変化を考慮すること。
5.2.3 軌道上環境
(1) 機構は、軌道上の環境条件に曝された状態で、要求寿命まで要求性能を満たすこと。
(2) 軌道上環境として、真空、温度サイクル、振動、衝撃、放射線、紫外線、原子状酸素などの要因を考慮すること。特に、これらの宇宙環境が機構に使用されている材料への影響を考慮すること。

5.3 部品・材料
機構の構成部品、材料及び工程は、機構の機能、性能、環境条件要求、品質、信頼性要求、及び仕様で規定されるその他の要求に適合するものを選択すること。

5.3.1 部品への要求
(1) 機構の構成部品は、可能かつ適切な場合は、認定部品や登録部品の中から選択すること。
(2) 機構の構成部品は、JERG-0-035「宇宙開発事業団部品適用ハンドブック」、JERG-0-037「宇宙用機構及び機構部品設計ガイドライン」等を参考に、機構の要求に適合するものを選択すること。
(3) 機構の構成部品は、可能かつ適切な範囲で共通化を図ること。

5.3.2 材料への要求
(2) 金属材料の選定に当たっては、物理、機械的性質以外に、耐腐食性、異種金属を接触させる場合の耐電食性、応力腐食割れ、必要に応じた表面改質処理などについて配慮すること。
(3) 宇宙環境に曝露される材料は、機構が使用されるミッション要求に適合する放射線、紫外線、原子状酸素、スペースデブリへの耐性、低アウトガス特性を有するものを選定すること。
(4) 温度変化、温度サイクルによる材料特性の変化が、機構の要求範囲内である材料を選定すること。
(5) 放射線、紫外線、原子状酸素、温度環境などの環境要因が、材料へ相乗的に作用する可能性がある場合は、これらの複合環境下での材料への影響が、機構の要求範囲内である材料を選定すること。
(6) 吸湿性や膨潤性がある材料を使用する場合は、吸湿や膨潤による材料の特性変化が、機構の要求範囲内である材料を選定すること。

5.4 機構設計

本項では部品、アセンブリ等の機構設計に対する全般的な設計検討事項について規定する。

5.4.1 精度設計

精度管理が要求される機構に対しては以下に示すような項目に対して、適切に誤差バジェットを検討し設計すること。

(1) 加工・組立公差、ミスアラインメント
(2) 曲がり（たわみ）、ねじれ
(3) 熱変形
(4) 機械的干渉（可動エンベロープ）
(5) 摩擦ノイズ（摩擦力及び摩擦力の変動、ヒステリシス）
(6) 駆動力変動（モータ、ばね、磁気ソレノイド）
(7) 制御過渡現象（共振、オーバシュート）
(8) 他の誤差変動に起因する性能誤差

5.4.2 駆動設計

駆動部を有する機構に対しては、アクチュエータの駆動トルクが以下の二つのマージン（余裕）を有するように設計すること。

以下の定義において、慣性質量を所定の時間内で加速するのに必要なトルクを加速トルク、摩擦力など駆動を阻害するトルクを抵抗トルクとする。

駆動を阻害する抵抗力に対する余裕である静的トルクマージンは以下のように定義され、1以上を有すること。
静的トルクマージン＝(駆動トルク－加速トルク)／抵抗トルク－1 ≧ 1

慣性質量を加速する場合の余裕である動的トルクマージンは以下のように定義され、0.25以上を有すること。
動的トルクマージン＝(駆動トルク－抵抗トルク)／(加速トルク)－1 ≧ 0.25

以上の式の適用が適切でない機構の場合、また、エネルギー法などの設計手法を取る場合などは、設計の妥当性を示した上で個別プログラムによって判断すること。
抵抗トルク、駆動トルクに関しては次の項目を考慮すること。

(1) 摩擦トルクについては定常駆動時での動摩擦トルクだけでなく、起動時、駆動方向の回転時等の静摩擦トルク、ヒステリシス等駆動阻害要因を抜く抽出し考慮すること。
(2) モータ駆動の場合、各モータについて運用上予測される温度、速度変化及び駆動電流の変動に対して要求条件を満足するトルクを有すること。また、その時の駆動電流が電力リソースに対しても整合すること。
(3) 抵抗トルクの検討（算定）に当っては、各抵抗要素（軸受、歯車、ハーネスケーブル、ラッチ、ダンパ等）に対して運用上想定される温度、速度変化に対して最悪ケースの組合せについて検討すること。また、必要があれば要素／サブアセンブリレベルでの試験により算定値の妥当性を検証すること。
(4) 冗長系を使用する駆動機構要素では、最悪条件において1個の要素が故障したケースに対しても確実なトルクマージンを確保すること。
(5) 冗長系を有する駆動機構要素の劣化に対しては、残りの機構要素に対するマージンの評価に、劣化した機構が抵抗トルクを発生する場合も考慮すること。

駆動形態が回転ではない場合には「トルク」を「力」と読み替えるものとする。

5.4.3 寿命設計
機構の寿命は、予測されたノミナルの地上試験及び軌道上運用の総和に対応し、適切な環境条件のもと要求寿命を満たすよう設計すること。

5.4.4 トライボロジー

(1) 機構の設計に当たっては適切な寸法設定と公差設定を行うとともに、要求される寿命の継続期間全体に渡り、その機構を機構の性能要求に適合させ、さらに固着、焼付き、啃み付きを防ぎ摩耗を減じるよう、しゅう動面、転がり面には適切な材料と潤滑剤を選定すること。
(2) 機構の潤滑面のコンタミネーション防止などの健全性を保つため、機構の設計、保管、取扱い、運用についての要求事項を明確にすること。
5.4.5　主な機構部品
転がり軸受、減速機、火工品、ばね等を用いる設計を行う場合は、JERG-0-037「宇宙用機構及び機構部品設計ガイドライン」を参考に行うこと。

5.4.6　その他要求事項
5.4.6.1　交換可能な機構
交換可能な機構は、正しい方向でのみ取り付け可能となる等、過誤防止を考慮した設計とすること。

5.4.6.2　ラッチングまたはロックイング
ロックイングを行うためのラッチング機構については、適切な設計を行い、ミッションの遂行時に発生する振動または衝撃による偶発的な解放を防止すること。

5.4.6.3　端部留め具
移動または回転が制限されている機構には、通常用または緊急用の機械的端部留め具を装備し、この留め具によって、機構の極限の動きや移動を最大位置まで制限して、作動品目を正しく機能させるとともに、インタフェース装備への干渉を防止すること。

5.4.6.4　分離可能な接触面
(1) 分離を想定している接触面間の凝着力は、規定された値以下となるよう設計すること。
(2) 嵌合部の接触面については接触条件、材料特性、表面粗さを考慮に入れて設計すること。

5.4.6.5　被覆部材
クリアランスを保って相対的に運動する部位については、極力被覆部材（多層断熱材、粘着テープ等）が存在しないように設計することとする。機能上の要求から被覆部材を介在させる必要がある場合は、同部材が接触することを想定し、動作を阻害することが無いよう十分配慮すること。

5.4.6.6　排気
(1) 機構が気密であるか、または、内部圧力の形成に対して機能的にも性能的にも対処できるよう設計がされている場合を除き、打ち上げ時及び軌道上廃棄時に行うための適切な手段を設計すること。
(2) 排気の方法を適切に設計して、軸受、光学機器や、その他の感度の高い機
器の汚染を最小限に押えること。
(3) 潤滑部位の外側へ通気にを行う場合には、潤滑剤が、使用されている他の宇宙機材に対する汚染防止の要求事項に適合すること。

5.4.6.7 火工品または他のアクチュエータを用いた解除、ロック装置
解放装置の作動は、清浄度要求事項と適合していること。また、解放装置は、デブリを閉じ込めるための適切な方法を有すること。

5.5 構造設計
5.5.1 構造設計に関わる一般要求
機構の構造設計は、J ERG-2-320 「構造設計標準」に規定する要求事項に適合していること。また、以下の事項を留意して設計すること。
機構は、全寿命時間において予測される熱環境条件下で、要求される機能及び性能を有すること。なお、熱環境条件には過渡的条件も含めること。

5.5.2 材料の許容値
(1) 構造に対する設計許容基準は、一般に、MMPDS「Metallic Materials Properties Development and Standardization Handbook」に規定されている。許容基準についてはJ ERG-2-320「構造設計標準」に従うこと。
(2) 設計上必要な強度及び他の機械的、物理的、熱的等の信頼性が不十分である場合は、新たに仕様書を設定し、評価及び試験等により保証すること。

5.5.3 強度安全マージン
(1) 機構は機械的インタフェース及び性能要求を満足し、また、取扱い、輸送、試験、貯蔵、打上げ及び軌道寿命の間に予測される環境に対して、損傷や劣化無しに耐えること。
(2) 機構は全ての環境に対して、正の安全マージンを持つこと。
(3) 標準的材料の安全係数に関してはJ ERG-2-320「構造設計標準」に準じた値を用いること。

5.5.4 剛性設計
打上げ時の機械環境に対応するために固有振動数の要求がある場合、また、軌道上での柔構造特性を確保するための要求がある場合には、要求を満たす剛性設計を行うこと。
5.6 熱設計
機械の熱設計は、JERG-2-310「熱制御系設計標準」で規定する要求事項に適合していること。また、以下の要求事項を満足していること。

機構は全寿命期間において予測される熱環境条件下で、要求される機能及び性能を有すること。なお、熱環境条件には過渡的条件を含めること。

5.7 電気設計
5.7.1 電気的設計
機構は電気的性能に関する要求条件を満足するように設計し、寿命期間を通じて安定な電気特性を示すこと。基本的には、JERG-2-200「電気設計標準」またはJERG-2-020「科学衛星搭載機器の電気設計基準書」に従うこと。

5.7.2 電線
(1) 曲げを受ける可能性のある箇所には固定部品を使用すること。
(2) ケーブル及び電線は次の事項を考慮して成形、配置及び支持すること。
   (a) 電線、電線端子及びコネクタに許容以上の機械的ストレスがかからないようにすること。
   (b) シャープエッジ、液体配管から距離を置いて配線すること。
   (c) 振動環境での損傷や故障を防止すること。

5.7.3 電気コネクタ
コネクタ形式及び形状（例：ピン数）は損傷や、結合ミスを避けるよう選択すること。

5.7.4 絶縁
電線などの絶縁についてはJERG-2-200「電気設計標準」またはJERG-2-020「科学衛星搭載機器の電気設計基準書」に準拠して設計すること。

5.7.5 接地
機構は機械的インタフェース点において接地すること。また、機械的インタフェース点と絶縁されている構成品については、必要に応じて別に接地を行うこと。

5.7.6 配線の変形
可動部で形状が変化する電線は、形状変化及び反力の再現性を持たせるよう配慮すること。
5.8 一般要求事項

5.8.1 安全性
(1) 機構の設計に際しては、製作、組立、試験、輸送などの全ての段階で、人員及び周囲の装置に対する災害が発生しないように、安全に十分な配慮を払うこと。また、これらの全ての段階で機構自体が損傷を受けないように十分な配慮を払うこと。
(2) 安全設計は、JMR-001「システム安全標準」に従って実施すること。

5.8.2 信頼性
(1) 機構は、しばしば単一故障点となる重要な構成要素であり、機構の信頼性には十分に配慮すること。
(2) 機構の信頼性は、設計マージンを大きくとること、各種パラメータに対する感度を小さくすること、単一故障点を冗長構成にすることなどにより高くすることができる。
(3) ミッション成功に必要な機構は、要求される信頼性を満たしていることを解析または試験により示すこと。
(4) 寿命が限られた部品は、寿命を試験または解析により検証すること。
(5) 部品の1つが故障した場合、他の機器や機構の不具合を引き起こさないようにすること。
(6) 信頼性解析、クリティカル品目の管理等は、JMR-004「信頼性プログラム標準」に従って開発過程において継続して実施すること。
(7) 機構の設計の際は、JERG-4-004「宇宙用駆動機器信頼性ハンドブック」を参考にすること。

5.8.3 品質管理
変更管理については、JMR-005「品質保証プログラム標準」に従って実施すること。

5.8.4 コンフィギュレーション
機構を構成する部品・材料等の機能・特性を識別・リスト化し、JMR-006「コンフィギュレーション管理標準」に従って最新の状態を維持管理すること。

5.8.5 冗長性
(1) 設計段階で、機構の全ての単一故障点を識別すること。単一故障点の数を最小とし信頼性要求を満たすために、可能な場合は、冗長構成を採用すること。
(2) 機構全体を冗長構成にできない場合は、機構の構成要素レベルで冗長化を考慮すること。
冗長系を構成する場合、構成する各系がお互いに干渉した場合でも機能性能を損なわない設計とすること。
冗長系の片方が故障した場合、冗長系の他方の機能や部品の不具合を引き起こさないようにすること。

5.8.6 運用性
(1) 機構は、ミッションに対して運用制限を課さないように設計すること。運用制限が避けられない場合は、その条件を特定すること。
(2) システムからオフノミナルな運用要求があった場合には、オフノミナルな運用を想定したワーストケース解析を行い、各種パラメータの変化に対する運用性の感受度を最小にするようにシステム設計を支援すること。

5.8.7 保全性
(1) 機構は、保管中あるいは地上作動の際には、メンテナンスが不要な設計にすること。やむを得ず保管中あるいは地上寿命に際してメンテナンスが避けられない場合は、動作回数、不具合の識別、修理内容等を記録し、メンテナンスが妥当であることを示すこと。
(2) 機構は、妥当な場合には、クリティカルな部品を交換できるように配慮した設計とすること。

5.8.8 互換性
機構、部品は、できるだけ互換性を持たせるように配慮した設計とすること。

5.8.9 過誤防止設計
(1) 機構、部品は、不適切な方法で組立てられないように設計すること。
(2) 機構、部品は、適切に組立てられ、取付けられていることを確認するために、試験または検査ができる設計とすること。

5.8.10 その他の要求
5.8.10.1 識別銘板
(1) 機構、部品は、銘板によって識別すること。銘板は機構の機能に影響を及ぼさない外表面に取り付けること。
(2) 銘板を取り付ける適切な外表面がない時は、貼付、エッチング記入、品目への直接表示とができる。

5.8.10.2 ノンフライト表示
ノンフライト品は、フライト品と識別できること。
5.8.10.3 計測項目
(1) 機構の性能を保証し、故障が生じた場合には、それを特定できる重要なデータは、地上評価段階から軌道上運用に至るまで継続的に計測できるように設計すること。
(2) 計測データは、可能な限りテレメータで取得できるようにすること。

6. 検証
(1) 宇宙用機構の開発は、検証プロセスを含んでいる。
検証手法は試験・検査・解析・類似性等による。
(2) 検証マトリックスを作成すること。

6.1 解析による検証
機構の解析検証には、以下の項目を含めること。

(1) 熱解析（最悪の運用及び非運用ケースの特定）
(2) 構造解析（剛性、機械的・熱的荷重による応力、疲労）
(3) 負荷、時間、衝撃、速度、寸法安定性、位置精度などを導き出すため、適用可能なすべての環境と全ての運用条件において（最悪状態の特定にもとづき）作動する機能の性能解析。
(4) 力学的マージン
(5) 衝撃の発生と感受性
(6) 外乱の発生と感受性
(7) 潤滑解析
(8) 寿命解析
(9) 磁気または電磁解析
(10) 放射線解析
(11) ストレス解析

6.1.1 最悪状態の特定
機構の最悪状態での運用及び非運用の条件設定は、特定の宇宙機と機構に対する環境、負荷、機能上の性能などの特性に応じて行うこと。
6.1.2 熱解析
機構の熱解析は、JERG-2-310「熱制御系設計標準」で規定する要求事項に適合していること。

6.1.3 構造解析
機構の構造解析はJERG-2-320「構造設計標準」で規定する要求事項に適合していること。

6.1.4 機能・性能解析
機能モデルに対する要求事項を以下に示す。
(1) 解析の根拠として使用する解析モデルまたは数値モデルは、以下の項目について機構の特性を表すものであること。またインタフェース条件及び宇宙機の特性を含むこと。
   (a) 質量
   (b) 慣性力
   (c) 重心の位置
   (d) 構造剛性
   (e) 作動力または作動トルク
   (f) 抵抗値
(2) (1)項のモデルは、以下の事項が実行されること。
   (a) 機械的変動要因のパラメトリック・スタディを行う。
   (b) 設計・試験フェーズを通じて必要があれば解析モデルの更新を行う。
解析の結果は、関連の試験結果と比較して検証すること。

6.1.5 力学的マージンの解析
力学的マージンに関する指定された要求事項に機構が適合していることを、解析によって検証すること。

6.1.6 衝撃の発生と感受性
機構が、衝撃の発生及び感受性に関して機構要求仕様において定める要求事項に適合していることを解析により検証すること。
6.1.7 発生擾乱
機構の作動が、振動（微振動）に関して機構要求仕様において定める要求事項に適合することを、解析により明らかにすること。

6.1.8 潤滑の解析
(1) 潤滑システムの選定が、適用法や寿命に適合していることを評価すること
(2) 潤滑剤の量の適合性について、解析により評価すること。

6.1.9 寿命解析
(1) 寿命に限度のある機構部品を特定すること。
(2) 寿命に限度のある機構部品については、寿命要求事項に適合していることを、解析によって検証すること。

6.1.10 磁気または電磁解析
EMC 基準を満足することを解析によって検証すること。解析は JERG-2-241 「EMC 設計標準」によること。

6.1.11 放射線解析
放射線への感受性が高い機構については、放射線解析を行い、寿命など性能要求事項を満たしていることを検証すること。解析は JERG-2-143 「耐放射線設計標準」によること。

6.1.12 ストレス解析
電気部品（ハーネスを含む。）についてはストレス解析を実施して、その電気部品がディレーティング基準に適合していることを検証すること。電力ハーネスのディレーティングは JERG-2-212 「ワイヤディレーティング標準」によること。

6.2 試験による検証
6.2.1 基本原則
(1) 試験では、ハードウェアが、設計、製造、性能に関する要求事項に適合していることを確認すること。試験には、開発試験、認定試験、受入れ試験及び寿命試験がある。
(2) 機構設計は、大気環境条件及び熱真空条件での地上運用に適合すること。許容可能な運用や、環境条件での運用に対する制限について定義すること。
(3) 機構設計は、運用形態において代表的な地上試験ができるように考慮すること。
と。また、重力のもとで、大気環境及び熱真空環境条件下での試験と適合するように考慮すること。

6.2.2 開発試験

(1) 開発試験は、次のように計画し実施すること。
   (a) 設計及び解析（特に動的解析）に必要なインプットを与えること。
   (b) 新規設計を検証すること。
   (c) クリティカルな機構の検証を行うこと。

(2) 試験
   試験は、以前の宇宙応用事例から得られた試験データによって明白に検証されている場合を除き、開発モデルの機構に対して以下を、プロジェクトの初期段階で実施すること。
   (a) 機能・性能試験
   (b) 振動試験及び衝撃試験（新規設計の検証として必要な場合）
   (c) 熱真空試験または温度試験（新規設計の検証として必要な場合）
   (d) 寿命が致命的な機構要素に対する寿命試験

(3) 開発試験が必要となるクリティカルな機構・部品は、設計及び開発プログラムの初期に識別されること。

6.2.3 認定試験

機構は、試験により認定されること。
認定試験は、代表的な手順と代表的な環境において実施すること。

6.2.3.1 機械環境試験

機械環境試験は、JERG-2-320「構造設計標準」で定める構造に関する要求事項に従い、検証すること。

6.2.3.2 熱真空試験

熱真空試験は、JERG-2-310「熱制御系設計標準」で定める要求事項に従い、検証すること。

6.2.3.3 機能試験

機能試験は、認定試験の環境条件（負荷、熱）に曝露された後でも、機構が機能・性能要求事項に適合していることを検証すること。
なお、試験の前に、機械的・熱的安定化を実施すること。
6.2.3.4 EMC試験
EMCに敏感な構成品を機構に使用する場合、または、宇宙機に固有のEMC要求事項が機構に課せられている場合には、機構のEMC性能を検証すること。試験はJERG-2-241「EMC設計標準」によること。

6.2.3.5 電気試験
電気試験は、機構が電気的機能・性能要求事項に適合していることを検証すること。

6.2.4 受入試験
認定された設計にもとづき新規に組立てられた製品は、受入試験により、製造されたハードウェアに製造上の欠陥がないことを検証すること。受入試験のレベルは、打上げ時に予測されるレベルよりは高いものの、認定レベルより低いレベルにて、実施されること。試験レベルは、ハードウェアに害を及ぼさないレベルとし、受入試験の後の修理調整は不要なものとすること。

6.2.4.1 試験項目
試験は、ワークマンシップエラーの検出のほか下記の項目を含むことが望ましい。
(1) 機能・性能が、要求される項目を満足すること。
(2) 電気配線は、破壊的放電を起すことなく、要求される電圧に耐える能力のあることを検証すること。

6.2.4.2 ならし運転
機構は、ならし運転が性能上有害であり、また信頼度が減少する可能性がある場合を除き、ならし運転を実施することが望ましい。

6.2.4.3 検査
機械の寸法、質量、外観、識別マーキングなどは、受入試験後に適切な検査を行うこと。

6.2.5 寿命試験
6.2.5.1 寿命認定
機構の設計、寿命及び性能の適合性について、受入試験レベル以上の環境試験
を受けさせた後、地上及び軌道上環境条件を模倣した寿命試験条件によって、検証すること。

6.2.5.2 寿命試験条件に対する要求事項

寿命試験条件は、以下に述べる寿命に影響を及ぼすパラメータを正しく表していること。

(1) 運用条件に適切に対応する熱条件、負荷条件、運動プロファイル。なお、参考として、寿命試験のサイクル数を設定する上で必要な期間係数を付録-Iに示す。

(2) 加速寿命試験を行って、機構の寿命性能を検証する場合には、温度あるいは速度による影響で、故障モードが設計条件によって見込まれるモードと異なることのないように試験条件を設定すること。

6.2.5.3 寿命試験の合格基準

機構の寿命試験においては、試験の終了時に、機能性能が設計要求に適合すること。
付録－I 寿命試験のサイクル数

寿命の認定を検証するには、予想地上試験サイクルと軌道上運用サイクルに表1に示す、それぞれの期間係数を乗じた合計数を用いること。

表1：寿命試験の期間係数

<table>
<thead>
<tr>
<th>フェーズ</th>
<th>サイクル数</th>
<th>期間係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>地上試験</td>
<td>1 ～ 1,000</td>
<td>4</td>
</tr>
<tr>
<td>（最小試験回数10）</td>
<td>1,001 ～ 100,000</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>＞100,000</td>
<td>1.25</td>
</tr>
<tr>
<td>軌道上</td>
<td>1 ～ 10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11 ～ 1,000</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1,001 ～ 100,000</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>＞100,000</td>
<td>1.25</td>
</tr>
</tbody>
</table>

サイクルの定義を行うにあたっては、少なくとも、同じ駆動場所（地上/軌道上）での動作回数、動作の振幅度、反転の回数などを考慮に入れること。試験によって検証すべき寿命期間を確定するには、地上、軌道上のそれぞれの予想サイクル数に応じた期間係数を乗算した値の累計を求めること。

例1 予想地上試験サイクル数：15
予想軌道上サイクル数：100
10サイクル（最初の10サイクル）10 × 10 = 100
90サイクル（残りの90サイクル）90 × 4 = 360
寿命試験の合計数 = 520

例2 予想地上試験サイクル数：2
最小試験回数10
予想軌道上サイクル数：1
寿命試験の合計数 = 20

ある連鎖動作内の構成要素（モータ、軸受、歯車など）は、その連鎖内の残りの構成要素のいずれにも適用される最大サイクル数に適合していること。

出典：ECSS-E-ST-33-01 Space engineering, Mechanisms 4.8.3.3.14